• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, July 31, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Stony Brook to develop computational tools to design efficient, cost-effective offshore

Bioengineer by Bioengineer
July 8, 2020
in Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

CEAS awarded a $1.1 million award from National Offshore Wind Research and Development Consortium (NOWRDC)

IMAGE

Credit: Stony Brook University

STONY BROOK, NY, July 7, 2020 -The College of Engineering and Applied Science (CEAS) at Stony Brook University announced it has received an $1.1 million award from the National Offshore Wind Research and Development Consortium (NOWRDC). Fotis Sotiropoulos, Dean of the College of Engineering and Applied Sciences at Stony Brook University, is the lead principle investigator of the project.

Sotiropoulos, SUNY Distinguished Professor of Civil Engineering, proposes to optimize offshore wind farm layouts by leveraging high-fidelity simulations on parallel supercomputers, advanced turbine controls and Artificial Intelligence tools. This cutting-edge design approach can reduce the levelized cost of energy (LCOE) associated with wind farms by as much as 15 percent, preliminary results suggest.

“Our initial findings for land-based wind farms indicate that simulation-driven approaches combined with advanced turbine controls can result in levelized cost of energy reduced by more than 10 percent, by considering the heterogeneous wind distribution when positioning wind turbines, and by more than 15 percent by employing advanced controls,” Sotiropoulos said. “I am confident that our research will help achieve similar results for offshore wind farms as well.”

Offshore wind farm layout design and turbine control strategies have a dramatic effect on the power production and maintenance cost of offshore wind projects. However, existing wind farm layout design tools do not utilize the latest advances in computational science and are largely based on overly simplified engineering models. Multiple factors can affect a wind farm layout, such as wind resources, turbine operation and controls, area dimensions, sea states, and environmental impacts.

Among these factors, turbine wakes play a key role in optimally positioning wind turbines, as wakes can decrease the power output while increasing the fatigue of downwind turbines, reducing performance and productivity. The research team to be led by Sotiropoulos, including researchers from the University of Minnesota and Sandia National Laboratories, will develop and transition to industry site-specific simulation tools that can design innovative offshore wind farm layouts taking into account the effect of turbine controls on turbine wakes and overall wind farm performance. This approach, known as control co-design (CCD), has never been attempted before for offshore wind farms.

The project will leverage and utilize field data from the EOLOS wind energy research facility at the University of Minnesota, the Sandia National Labs SWiFT facility in Lubbock, Texas, and data from a bottom-fixed offshore wind farm to be identified by global offshore wind industry partner Equinor.

“The Consortium is working with partners like Stony Brook all across the nation to bring down the cost of developing this game-changing renewable resource while overcoming domestic market challenges,” said Carrie Cullen Hitt, Executive Director, National Offshore Wind Research and Development Consortium. “We look forward to working with Fotis Sotiropoulos and his team at Stony Brook team on this innovation project that will support the cost-effective development of offshore wind energy in the U.S.”

###

The National Offshore Wind Research and Development Consortium was established in 2018 when the New York State Energy Research and Development Authority was awarded $18.5 million from the U.S. Department of Energy (DOE). As the first federally funded public-private partnership focused on advancing offshore wind technology in the United States, the Consortium, as a not-for-profit organization, supports cost-effective and responsible development of offshore wind and to maximize economic benefit the United States. The award was a result of a solicitation administered by NYSERDA on behalf of the Consortium.

Media Contact
Greg Filiano
[email protected]

Tags: Biomedical/Environmental/Chemical EngineeringCivil EngineeringResearch/DevelopmentTechnology/Engineering/Computer Science
Share12Tweet8Share2ShareShareShare2

Related Posts

Safeguarding Your Heart: Essential Insights for Heart Health

Safeguarding Your Heart: Essential Insights for Heart Health

July 31, 2025
blank

Decoding the Mechanisms Behind Chemotherapy Resistance in Bladder Cancer

July 31, 2025

Sunlight Transforms the Chemical Breakdown of Discarded Face Masks

July 31, 2025

Transforming Hydrogen Fluoride Production: Safer and Scalable Synthesis Breakthrough

July 31, 2025
Please login to join discussion

POPULAR NEWS

  • Blind to the Burn

    Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    60 shares
    Share 24 Tweet 15
  • Dr. Miriam Merad Honored with French Knighthood for Groundbreaking Contributions to Science and Medicine

    46 shares
    Share 18 Tweet 12
  • Study Reveals Beta-HPV Directly Causes Skin Cancer in Immunocompromised Individuals

    37 shares
    Share 15 Tweet 9
  • Engineered Cellular Communication Enhances CAR-T Therapy Effectiveness Against Glioblastoma

    35 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Safeguarding Your Heart: Essential Insights for Heart Health

Decoding the Mechanisms Behind Chemotherapy Resistance in Bladder Cancer

Sunlight Transforms the Chemical Breakdown of Discarded Face Masks

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.