• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, December 23, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Stocks of vulnerable carbon twice as high where permafrost subsidence is factored in

Bioengineer by Bioengineer
June 17, 2020
in Biology
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Victor Leshyk, Center for Ecosystem Science and Society

New research from a team at Northern Arizona University suggests that subsidence, gradually sinking terrain caused by the loss of ice and soil mass in permafrost, is causing deeper thaw than previously thought and making vulnerable twice as much carbon as estimates that don’t account for this shifting ground. These findings, published this week in the Journal of Geophysical Research: Biogeosciences, suggest traditional methods of permafrost thaw measurement underestimate the amount of previously-frozen carbon unlocked from warming permafrost by over 100 percent.

“Though we’ve known for a long time that subsidence happens across the permafrost zone, this phenomenon hasn’t been systematically accounted for when we talk about thaw and carbon vulnerability,” said Heidi Rodenhizer, a researcher at the Center for Ecosystem Science and Society at Northern Arizona University and lead author of the study, which was co-authored by a team from NAU, Woods Hole Research Center, Instituto de Ciencias Agrarias, and Yale University. “We saw that in both warming and control environments, slight temperature increases drove significant thaw and unlocked more carbon than we saw when we weren’t looking at subsidence.”

Traditionally, permafrost thaw has been calculated by measuring active layer thickness. To do that, scientists insert a metal rod into the ground until it hits permafrost, and measure from that depth to the soil surface. However, subsidence can mask actual thaw by lowering the soil surface and changing the frame of reference; for instance, some long-term experiments that rely on measuring active layer thickness have not recorded significant changes in thaw depth from year to year, despite rapid temperature warming.

So Rodenhizer and her team combined subsidence with active layer measurements to discover how much the ground was sinking, and how much unlocked carbon was being missed. At their warming site near Healy, Alaska, the team used high-accuracy GPS to measure the elevation of experimental plots at six time points over nine years. At each plot, Rodenhizer and her team found that permafrost thawed deeper than the active layer thickness indicated: 19 percent in the control plots, and 49 percent in the warming plots. The amount of newly-thawed carbon within the active layer was between 37 percent and 113 percent greater.

As the Arctic warms twice as fast as the rest of the planet, these findings have potentially vast implications for global carbon fluxes. Due to the widespread nature of subsidence–about 20 percent of the permafrost zone is visibly subsided, and contains approximately 50 percent of all carbon stored in permafrost–failing to account for subsidence could lead to significant underestimates of future carbon release in global climate change projections. Rodenhizer’s team hopes that this study will convince more Arctic researchers across the permafrost monitoring network to apply this method and help change that.

“We know that these vast carbon stores in permafrost are at risk, and we have the tools to account for subsidence and track where the carbon is going,” said permafrost researcher and senior author Ted Schuur. “We should be using everything in our toolbox to make the most accurate estimates, because so much depends on what happens to Arctic carbon.”

###

Media Contact
Kate Petersen
[email protected]

Related Journal Article

http://dx.doi.org/10.1029/2019JG005528

Tags: Climate ChangeEarth ScienceEcology/EnvironmentGeology/SoilTemperature-Dependent Phenomena
Share12Tweet8Share2ShareShareShare2

Related Posts

Targeting DPP4: Ferroptosis and Endometrial Receptivity in PCOS

Targeting DPP4: Ferroptosis and Endometrial Receptivity in PCOS

December 23, 2025
Y-Linked Variation Drives Sexual Dimorphism in Bass

Y-Linked Variation Drives Sexual Dimorphism in Bass

December 23, 2025

Sulforaphane: Sources, Extraction, Bioactivity, and Bioavailability

December 23, 2025

Carbonic Anhydrase Nce103 Drives Candida Auris Resistance

December 23, 2025
Please login to join discussion

POPULAR NEWS

  • Nurses’ Views on Online Learning: Effects on Performance

    Nurses’ Views on Online Learning: Effects on Performance

    70 shares
    Share 28 Tweet 18
  • NSF funds machine-learning research at UNO and UNL to study energy requirements of walking in older adults

    71 shares
    Share 28 Tweet 18
  • Unraveling Levofloxacin’s Impact on Brain Function

    54 shares
    Share 22 Tweet 14
  • Exploring Audiology Accessibility in Johannesburg, South Africa

    51 shares
    Share 20 Tweet 13

About

BIOENGINEER.ORG

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Spiritual Health Boosts Happiness in Chronically Ill Seniors

Unique Gut Microbiome Profiles in Korean Lupus Patients

Defining ‘Good Care’ in Digital Health for Dual Disorders

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 70 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.