• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, September 26, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Stem cells provide information about neuron resilience in ALS

Bioengineer by Bioengineer
May 9, 2019
in Health
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Researchers at Karolinska Institutet in Sweden have developed a stem cell based model in order to study the resilience and vulnerability of neurons in the neurodegenerative disease ALS. The results are published in the journal Stem Cell Reports and can aid in the identification of new genetic targets for treatments protecting sensitive neurons.

Amyotrophic lateral sclerosis, ALS, is a fatal disease with no effective treatment or cure. The disease is characterised by a loss of neurons controlling voluntary muscles, known as motor neurons. This causes muscle atrophy, weakness and eventually paralysis.

However, some groups of motor neurons are highly resilient and can survive all stages of the disease. These include the neurons that control our eye movements, the oculomotor neurons. Exactly why these motor neurons can withstand the disease is currently unknown.

The oculomotor neurons are few, found in the brain stem and are difficult to study in humans and animals. In order to further investigate the differences in sensitivity between different motor neurons, it would thus be advantageous if cultivated stem cells could be used.

One such stem cell based model of neuron resilience in ALS has now been developed by researchers at Karolinska Institutet.

“This cell culture system can help identify new genes contributing to the resilience in oculomotor neurons that could be used in gene therapy to strengthen sensitive motor neurons,” explains Eva Hedlund, docent at the Department of Neuroscience at Karolinska Institutet, who led the study.

The work builds upon the KI researchers having succeeded in generating oculomotor neurons from cultivated embryonic stem cells. This was achieved by overexpressing the transcription factor PHOX2A, which is necessary for the formation of oculomotor neurons during an embryo’s development. By performing various analyses of the cells and by similarities with their equivalents in mice and humans, the researchers conclude that the cells generated are indeed oculomotor neurons.

The researchers show that these resilient neurons generated from stem cells activate a survival-enhancing signal known as Akt, and that this signal is also activated in oculomotor neurons in humans.

The oculomotor neurons that were generated in the lab also appeared more resilient to ALS-like degeneration when compared to spinal cord motor neurons – something which is also seen in humans.

“All in all, this shows that we have created a robust model for studying mechanisms for neuron resilience and vulnerability in ALS,” says lead author Ilary Allodi, who worked with the study as a postdoc in Eva Hedlund’s research group.

###

The research was funded with support from the Swedish Research Council, EU Joint Programme for Neurodegenerative Disease, the Ragnar Söderberg Foundation, Åhlén Foundation, Hjärnfonden, Ulla-Carin Lindquist Foundation for ALS Research, the Petrus and Augusta Hedlund Foundation, Swedish Society of Medicine, Lundbeck Foundation, Swiss National Science Foundation and Novo Nordisk Foundation.

Publication: “Modeling motor neuron resilience in ALS using stem cells”. Ilary Allodi, Jik Nijssen, Julio Aguila Benitez, Christoph Schweingruber, Andrea Fuchs, Gillian Bonvicini, Ming Cao, Ole Kiehn, and Eva Hedlund. Stem Cell Reports, online 9 May 2019, doi: 10.1016/j.stemcr.2019.04.009.

Media Contact
Press Office
[email protected]
http://dx.doi.org/10.1016/j.stemcr.2019.04.009

Tags: Cell BiologyMedicine/Healthneurobiology
Share12Tweet8Share2ShareShareShare2

Related Posts

Studying Turkish Nurses: Harassment Scale Validation Insights

September 26, 2025

Robot-Assisted Bronchoscopy Enables Diagnosis of Smallest, Hard-to-Reach Lung Tumors

September 26, 2025

Rehabilitation Needs of Major Disorders: A Review

September 26, 2025

Ovarian Autophagy: Benefits, Risks, and Key Questions

September 26, 2025
Please login to join discussion

POPULAR NEWS

  • New Study Reveals the Science Behind Exercise and Weight Loss

    New Study Reveals the Science Behind Exercise and Weight Loss

    77 shares
    Share 31 Tweet 19
  • Physicists Develop Visible Time Crystal for the First Time

    71 shares
    Share 28 Tweet 18
  • Scientists Discover and Synthesize Active Compound in Magic Mushrooms Again

    54 shares
    Share 22 Tweet 14
  • Tailored Gene-Editing Technology Emerges as a Promising Treatment for Fatal Pediatric Diseases

    51 shares
    Share 20 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Studying Turkish Nurses: Harassment Scale Validation Insights

Robot-Assisted Bronchoscopy Enables Diagnosis of Smallest, Hard-to-Reach Lung Tumors

Rehabilitation Needs of Major Disorders: A Review

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.