• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, July 31, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Stem cell therapy shows promise against age-related muscle loss

Bioengineer by Bioengineer
March 23, 2021
in Biology
Reading Time: 4 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Kim Ratliff, Augusta University

As the name implies, induced pluripotent stem cells can become any type of cell in our body, and scientists have evidence that when they prompt them to become muscle progenitor cells they can help restore the sometimes debilitating muscle loss that happens with age.

Progressive, age-related muscle loss is called sarcopenia, and it can impair mobility and quality of life, says Dr. Wanling Xuan, stem cell biologist in the Vascular Biology Center at the Medical College of Georgia.

Muscle supports the skeleton and enables movement, and the loss of muscle size and strength increases falls, hospital stays and recovery times, which can result in even more muscle wasting, disability as well as premature death, says Xuan. Sarcopenia also can contribute to diseases like obesity, osteoporosis and diabetes, drive health care costs up and quality of life down, according to the Alliance for Aging Research.

“We want to help people who are suffering with this situation,” Xuan says.

She has evidence that one of the most efficient and effective ways to do that is by using a small manmade molecule called givinostat to coax the induced pluripotent stem cells, or iPSCs, to become these muscle, or myogenic, progenitor cells. These cells make actual muscle cells as well as the extracellular vesicles — little nearby containers packed with muscle-specific cargo, like microRNAs — that aid muscle repair and regeneration.

Xuan is principal investigator on a $1.6 million grant (1RO1AG070145-01) from the National Institutes of Health to further explore the benefit of directly administering these myogenic progenitor cells or the extracellular vesicles they produce.

In their animal model of aging-related sarcopenia, they’ve already shown the strategies increase the number of muscle stem cells and decrease destructive inflammation, which typically increases with age.

Givinostat, which is in the final phase of clinical trials for muscular dystrophy, is a manmade small molecule that inhibits HDACs, enzymes that help turn genes off, and can steer iPSCs to become muscle progenitor cells and muscle-specific extracellular vesicles. Other small molecules produce less-specific cargo, Xuan says.

“Givinostat primes them, it tunes them to produce the right type of vesicles,” says coinvestigator Dr. Mark Hamrick, a bone and muscle biologist in the MCG Department of Cellular Biology and Anatomy and MCG’s senior associate dean for research.

Xuan already has identified some of the cargo, including mRNAs that activate cell signaling pathways important to muscle regeneration.

Since giving the entire iPSC could result in tumor production, Xuan thinks and has early evidence that for strictly age-related muscle loss, just giving the vesicles produced by her process is likely the best strategy — and medicine — to help regenerate aged stem cells and restore more resilient, youthful muscle. In fact, many of the regenerative properties of muscle progenitor cells can be credited to the vesicles, Xuan says.

She suspects that in older individuals who have an actual muscle injury in the face of sarcopenia, giving the muscle progenitor cells themselves may be a better option, because of the individual’s impaired ability to generate new muscle cells that may be needed for a full repair. She notes that in the high oxidative stress environment of aged or diseased muscle, it can be hard for new muscle cells to integrate and become helpful, which is another avenue they are exploring.

When we are younger, skeletal muscle stem cells called satellite cells hovering in the vicinity of our muscles, produce most of the muscle progenitor cells and extracellular vesicles in response to exercise or injury. But the function and number of satellite cells decline with age, likely starting in our 40s, Hamrick says.

The cargo vesicles carry also likely changes in response to an aging environment like the increased levels of destructive factors such as inflammation and oxidative stress, Hamrick says. Also with age, some cells become senescent — not dead but also not carrying out their usual function — and there is increasing evidence these “zombie” cells are producing damaging factors as well, Hamrick says.

Muscle wasting diseases like muscular dystrophy also decrease the number and function of satellite cells, and the scientists have evidence their technique may help there as well.

Xuan and longtime mentor Dr. Muhammad Ashraf, professor and stem cell biologist in the Vascular Biology Center, have a new paper in the journal Stem Cell Research & Therapy indicating that using givinostat to induce iPSCs into action helps replenish satellite cells in the face of muscular dystrophy. The technique also produces a lot of muscle-making progenitor cells as well as new blood vessel growth to sustain new muscle following muscle injury in a muscular dystrophy animal model. It also restores levels of dystrophin, a key protein for the muscle that supports the skeleton that is missing in muscular dystrophy, they report.

The scientists say that their rejuvenating approach likely could be applied to other conditions as well, including any aging cell type, and that giving extracellular vesicles already is being explored for stroke recovery and bone repair, Hamrick notes.

There is a lot of individual variability in the amount of muscle loss we experience with age — more active individuals tend to have less, while inactivity and disease can accelerate loss, Xuan says

Sarcopenia produces changes like atrophy of fast-twitch fibers, the fibers that generate muscle’s speed and power, Hamrick says, one of the reasons falls become more likely.

“People don’t have the capacity to quickly move, catch themselves, prevent the fall,” he says. Fat also accumulates in previously lean muscle, which can affect its look and function. The point of communication between muscles and the nerves that tell them what to do also degrades.

While some treatments, like growth hormone supplements are under study, exercise like resistance, or strength, training and a healthy diet are your best sarcopenia prevention options, Xuan says. In fact, there is evidence in humans that resistance training improves stem cell proliferation — and so muscle regeneration — and increases the size of fast-twitch muscle fibers, Hamrick says.

###

Media Contact
Toni Baker
[email protected]

Tags: AgingCell BiologyDemographyDisabled PersonsGerontologyMedicine/HealthMusculatureNanotechnology/Micromachines
Share13Tweet8Share2ShareShareShare2

Related Posts

blank

Precision-Fermented Chicken Protein from Brewed Tested in Pet Food Trials

July 31, 2025
Leopard Seals Sing: Under-Ice Sounds Flow Like Nursery Rhymes

Leopard Seals Sing: Under-Ice Sounds Flow Like Nursery Rhymes

July 31, 2025

New Book Investigates How Antibiotics Affect Women’s Reproductive Health

July 31, 2025

Western Biologists Uncover Long-Standing Mystery Behind Cricket Song Mechanism

July 31, 2025
Please login to join discussion

POPULAR NEWS

  • Blind to the Burn

    Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    60 shares
    Share 24 Tweet 15
  • Dr. Miriam Merad Honored with French Knighthood for Groundbreaking Contributions to Science and Medicine

    46 shares
    Share 18 Tweet 12
  • Study Reveals Beta-HPV Directly Causes Skin Cancer in Immunocompromised Individuals

    37 shares
    Share 15 Tweet 9
  • Engineered Cellular Communication Enhances CAR-T Therapy Effectiveness Against Glioblastoma

    35 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Advancements and Breakthroughs in Endometrial Cancer Screening: A Current Overview

AMS Science Preview: Record-Breaking Lightning, Declining Hurricanes, and Advances in Fire Forecasting

4D Imaging Reveals Subsurface Damage to Heat Shields

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.