• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Tuesday, June 6, 2023
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Stem cell study paves way for manufacturing cultured meat

Bioengineer by Bioengineer
December 7, 2021
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Scientists have for the first time obtained stem cells from livestock that grow under chemically defined conditions, paving the way for manufacturing cell cultured meat and breeding enhanced livestock.

Stem cell image

Credit: University of Nottingham, Professor Ramiro Alberio

Scientists have for the first time obtained stem cells from livestock that grow under chemically defined conditions, paving the way for manufacturing cell cultured meat and breeding enhanced livestock.

Researchers from the University of Nottingham’s School of Biosciences, together with colleagues at the Universities of Cambridge, Exeter Tokyo and Meiji (Japan) have developed stem cell lines from pigs, sheep and cattle embryos grown without the need for serum, feeder cells or antibiotics. The research “Pluripotent stem cells related to embryonic disc exhibit common self-renewal requirements in diverse livestock species” has been published today in the journal Development and was funded by BBSRC, EU (ERC), MRC and Wellcome Trust.

The chemically defined conditions are growth medium suitable for the in vitro cell culture of animal cells in which all of the chemical components are known. Standard cell culture media commonly consist of a basal medium supplemented with animal serum (such as fetal bovine serum, FBS) as a source of nutrients and other ill-defined factors. 

The technical disadvantages to using serum include its undefined nature, batch-to-batch variability in composition, and the risk of contamination so this new chemically defined approach provides greater consistency and safety, making it an ideal solution for manufacturing new lab grown food products.

Professor Ramiro Alberio led the research and explains: “The ability to derive and maintain livestock stem cells under chemically defined conditions paves the way for the development of novel food products, such as cultured meat . The cell lines we developed are a step change from previous models as they have the unique ability to permanently grow to make muscle and fat.”

These novel cell lines can differentiate into multiple cell types, they can be genetically manipulated using Crispr/Cas9 gene editing tool and can be used as donors for nuclear transfer. This technology offers new opportunities for expanding research into gene editing animals to improve their productivity, and adaptation to  to climate change and modifications of  diets to reduce the environmental impact of livestock production. 

Professor Alberio adds: “Gene editing in this way makes modifications that could happen naturally  over a long time but in a selective a rapid manner to customize specific traits. This can accelerate the pace of genetic selection of livestock and cultured meat to improve productivity and creation of healthier foods. With a growing population to feed in a changing climate finding reliable and sustainable food is vital. This research offers potential solutions that the food industry could use at scale.”

Professor Austin Smith, Director of the University of Exeter’s Living Systems Institute, one of the world’s leading experts in stem cell research said: “It is very exciting that starting from a fundamental question about early development in different animals we have discovered a technique that may revolutionise future production of meat”. 

 



Journal

Development

Method of Research

Experimental study

Subject of Research

Cells

Article Title

Pluripotent stem cells related to embryonic disc exhibit common self-renewal requirements in diverse livestock species

Article Publication Date

7-Dec-2021

Share12Tweet8Share2ShareShareShare2

Related Posts

Feedback Loop

The other side of the story: How evolution impacts the environment

June 5, 2023
African BioGenome Project (AfricaBP) Open Institute for Genomics and Bioinformatics Southern Africa Workshop Poster 2023

African BioGenome Project (AfricaBP) Open Institute for Genomics and Bioinformatics Workshop 2023

June 5, 2023

Weather anomalies are keeping insects active longer

June 5, 2023

Scientists expand understanding of limb evolution in earliest birds

June 5, 2023

POPULAR NEWS

  • plants

    Plants remove cancer causing toxins from air

    41 shares
    Share 16 Tweet 10
  • Element creation in the lab deepens understanding of surface explosions on neutron stars

    36 shares
    Share 14 Tweet 9
  • Deep sea surveys detect over five thousand new species in future mining hotspot

    35 shares
    Share 14 Tweet 9
  • How life and geology worked together to forge Earth’s nutrient rich crust

    35 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Mount Sinai researchers use new deep learning approach to enable analysis of electrocardiograms as language

Ba2LuAlO5: A new proton conductor for next-generation fuel cells

Programmable 3D printed wound dressing could improve treatment for burn, cancer patients

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 50 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In