• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, September 11, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Star-quake vibrations lead to new estimate for Milky Way age

Bioengineer by Bioengineer
December 4, 2019
in Chemistry
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Data gathered by NASA’s now defunct Kepler telescope provides a solution to an astronomical mystery

IMAGE

Credit: NASA/JPL Caltech/R.Hurt/SSC


Star-quakes recorded by NASA’s Kepler space telescope have helped answer a long-standing question about the age of the “thick disc” of the Milky Way.

In a paper published in the journal Monthly Notices of the Royal Astronomical Society, a team of 38 scientists led by researchers from Australia’s ARC Centre of Excellence for All Sky Astrophysics in Three Dimensions (ASTRO-3D) use data from the now-defunct probe to calculate that the disc is about 10 billion years old.

“This finding clears up a mystery,” says lead author Dr Sanjib Sharma from ASTRO-3D and Australia’s University of Sydney.

“Earlier data about the age distribution of stars in the disc didn’t agree with the models constructed to describe it, but no one knew where the error lay – in the data or the models. Now we’re pretty sure we’ve found it.”

The Milky Way – like many other spiral galaxies – consists of two disc-like structures, known as thick and thin. The thick disc contains only about 20 per cent of the Galaxy’s total stars, and, based on its vertical puffiness and composition, is thought to be the older of the pair.

To find out just how much older, Dr Sharma and colleagues used a method known as asteroseismology – a way of identifying the internal structures of stars by measuring their oscillations from star quakes.

“The quakes generate soundwaves inside the stars that make them ring, or vibrate,” explains co-author Associate Professor Dennis Stello from ASTRO-3D and the University of New South Wales.

“The frequencies produced tell us things about the stars’ internal properties, including their age. It’s a bit like identifying a violin as a Stradivarius by listening to the sound it makes.”

This age-dating allows researchers to essentially look back in time and discern the period in the Universe’s history when the Milky Way formed; a practice known as Galactic-archaeology.

Not that the researchers actually hear the sound generated by star-quakes. Instead, they look for how the internal movement is reflected in changes to brightness.

“Stars are just spherical instruments full of gas,” says Sharma, “but their vibrations are tiny, so we have to look very carefully.

“The exquisite brightness measurements made by Kepler were ideal for that. The telescope was so sensitive it would have been able to detect the dimming of a car headlight as a flea walked across it.”

The data delivered by the telescope during the four years after it was launched in 2009 presented a problem for astronomers. The information suggested there were more younger stars in the thick disc than models predicted.

The question confronting scientists was stark: were the models wrong, or was the data incomplete?

In 2013, however, Kepler broke down, and NASA reprogrammed it to continue working on a reduced capacity – a period that became known as the K2 mission. The project involved observing many different parts of the sky for 80 days at a time.

The first tranche of this data represented a rich new source for Dr Sharma and colleagues from Macquarie University, Australian National University, University of New South Wales and the University of Western Australia. They were joined in their analysis by others from institutions in the US, Germany, Austria, Italy, Denmark, Slovenia and Sweden.

A fresh spectroscopic analysis revealed that the chemical composition incorporated in the existing models for stars in the thick disc was wrong, which affected the prediction of their ages. Taking this into account, the researchers found that the observed asteroseismic data now fell into “excellent agreement” with model predictions.

The results provide a strong indirect verification of the analytical power of asteroseismology to estimate ages, says Professor Stello.

He added that additional data still to be analysed from K2, combined with new information gathered by NASA’s Transiting Exoplanet Survey Satellite (TESS), will result in accurate estimates for the ages of even more stars within the disc and this will help us to unravel the formation history of the Milky Way.

###

Media Contact
Andrew Masterson
[email protected]
61-488-777-179

Related Journal Article

http://dx.doi.org/10.1093/mnras/stz2861

Tags: AstronomyAstrophysicsSpace/Planetary Science
Share12Tweet8Share2ShareShareShare2

Related Posts

Random-Event Clocks Offer New Window into the Universe’s Quantum Nature

Random-Event Clocks Offer New Window into the Universe’s Quantum Nature

September 11, 2025
Portable Light-Based Brain Monitor Demonstrates Potential for Advancing Dementia Diagnosis

Portable Light-Based Brain Monitor Demonstrates Potential for Advancing Dementia Diagnosis

September 11, 2025

Scientists reinvigorate pinhole camera technology for advanced next-generation infrared imaging

September 11, 2025

BeAble Capital Invests in UJI Spin-Off Molecular Sustainable Solutions to Advance Disinfection and Sterilization Technologies

September 11, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    152 shares
    Share 61 Tweet 38
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    64 shares
    Share 26 Tweet 16
  • First Confirmed Human Mpox Clade Ib Case China

    56 shares
    Share 22 Tweet 14

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Revolutionary Ion Exchange Membranes for Arsenic Removal

PATZ1: Key Player in Tumorigenesis and Metabolism

Barriers to Video Visits for Non-English Patients

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.