• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, May 15, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Stable quantum bits can be made from complex molecules

Bioengineer by Bioengineer
November 10, 2016
in Science News
Reading Time: 3 mins read
0
ADVERTISEMENT
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Design by Dr. Christopher Muryn

Quantum computing is about to get more complex. Researchers have evidence that large molecules made of nickel and chromium can store and process information in the same way bytes do for digital computers. The researchers present algorithms proving it's possible to use supramolecular chemistry to connect "qubits," the basic units for quantum information processing, in Chem on November 10. This approach would generate several kinds of stable qubits that could be connected together into structures called "two-qubit gates."

"We have shown that the chemistry is achievable for bringing together two-qubit gates," says senior author Richard Winpenny, Head of the University of Manchester School of Chemistry. "The molecules can be made and the two-qubit gates assembled. The next step is to show that these two-qubit gates work."

Traditional computers organize and store information in the form of bits, which are written out in long chains of 0s and 1s, whereas quantum computers use qubits, which can be 1, 0, or any superposition between those numbers at the same time, allowing researchers to do much more powerful computations. However, large assemblies of qubits that are stable enough to be applied to perform algorithms don't yet exist.

Winpenny and his collaborators address this problem in their algorithm designs, which combine large molecules to create both two qubits and a bridge between the units, called a quantum gate. These gates are held together through supramolecular chemistry. Studies of the gates show that the quantum information stored in the individual qubits is stored long enough to allow manipulations of the information and hence algorithms. The time information that can be stored is called the coherence time.

"Say you're in a bar and you're trying to bring two pints of beer back to your friends without spilling it. But the bar is filled with drunks who are singing, jumping around, and dancing. The coherence time is a measure of how far you can get the beer without spilling it," says Winpenny. "You want the bar to be very well behaved and very stationary so you can walk through the pub and get back to the table, just like we want the qubits to be stable long enough so we can store and manipulate information.

"The real problem seems to be whether we could put these qubits together at all. But we showed that connecting these individual qubits doesn't change the coherence times, so that part of the problem is solvable," adds Winpenny. "It's achievable to create multi-qubit gates, and we're hoping it inspires more scientists to move in that direction."

###

This work was primarily supported by the EPSRC and the European Commission.

Chem, Ferrando-Soria et al.: "Swithable Interaction in Molecular Double Qubits" http://www.cell.com/chem/fulltext/S2451-9294(16)30166-8

Chem (@Chem_CP) is the first physical science journal published by Cell Press. The sister journal to Cell, Chem provides a home for seminal and insightful research and showcases how fundamental studies in chemistry and its sub-disciplines may help in finding potential solutions to the global challenges of tomorrow. Visit http://www.cell.com/chem. To receive Cell Press media alerts, contact [email protected].

Media Contact

Michaela Kane
[email protected]
617-397-2802
@CellPressNews

http://www.cellpress.com

Share12Tweet8Share2ShareShareShare2

Related Posts

California Chief Nurse Officer Honored as National Champion for Women’s Health

California Chief Nurse Officer Honored as National Champion for Women’s Health

May 15, 2025
EvoCast Gene Editor

Revolutionary Gene Editing Tool Achieves Unprecedented Precision

May 15, 2025

Comparing Dental and Vision Care Access for Veterans: Medicare Advantage vs. Traditional Medicare

May 15, 2025

Chemotactic Zn Micromotor Treats High Blood Ammonia

May 15, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Volatile-Rich Cap Found Above Yellowstone Magma

    665 shares
    Share 266 Tweet 166
  • Natural Supplement Shows Potential to Slow Biological Aging and Enhance Muscle Strength

    88 shares
    Share 35 Tweet 22
  • Analysis of Research Grant Terminations at the National Institutes of Health

    78 shares
    Share 31 Tweet 20
  • The Rise of Eukaryotic Cells: An Evolutionary Algorithm Spurs a Major Biological Transition

    67 shares
    Share 27 Tweet 17

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

California Chief Nurse Officer Honored as National Champion for Women’s Health

Revolutionary Gene Editing Tool Achieves Unprecedented Precision

Comparing Dental and Vision Care Access for Veterans: Medicare Advantage vs. Traditional Medicare

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.