• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, November 4, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Cancer

SQZ cell engineering technology shows key advantages for developing cell therapies

Bioengineer by Bioengineer
November 1, 2018
in Cancer
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

WATERTOWN, Mass., Nov. 1, 2018 — SQZ Biotechnologies (SQZ), a cell therapy company developing novel treatments for multiple therapeutic areas, today announced the peer-reviewed publication of data demonstrating key benefits of the SQZ cell therapy platform in a Proceedings of the National Academy of Sciences (PNAS) paper titled "Cell engineering with microfluidic squeezing preserves functionality of primary immune cells in vivo."

"At SQZ, we believe in the enormous potential of cell-based therapies. The work put forth in this paper demonstrates that electroporation, the widely used technology behind many gene edited cell therapies, such as modified T cell treatments, can lead to unintended long-term biological consequences that could severely limit the therapeutic potential of engineered cells. Strikingly, the SQZ cell therapy platform does not lead to these negative functional changes," said Armon Sharei, PhD, chief executive officer and founder of SQZ Biotech and the senior author on the paper. "These data deepen our conviction that the SQZ platform has unique potential to disrupt today's engineered cell therapies and transform the lives of patients suffering from a range of debilitating diseases."

In this work, researchers conducted a detailed analysis to determine the downstream functional consequences of electroporation as compared to the SQZ cell therapy platform, a microfluidic membrane deformation technique, termed squeezing. Cells modified using electroporation showed significant changes in gene expression that resulted in long-lasting functional deficiencies in normal cellular activity. In contrast, cells modified via squeezing exhibited minimal changes in gene expression and preserved key biological functions essential for maintaining therapeutic potential.

The differences in function were further confirmed in a therapeutic tumor model in which electroporated T cells edited for PD-1 had deficiencies in their biological activity whereas PD-1 edited squeezed cells maintained their therapeutic capacity.

"Safe, efficient, and scalable modification of cells is an essential prerequisite for the development of successful cell-based therapies," said Robert Langer, DSc, Institute Professor at MIT, SQZ founder and board member. "SQZ has already demonstrated the ability to enable robust and scalable engineering of cell therapies. In this comparative study, detailed transcriptome, protein and functional profiling revealed that cell engineering via electroporation leads to significant changes across all three parameters but that cells engineered using the SQZ cell therapy platform showed few changes. I am encouraged to see further published evidence of the superiority of the SQZ platform in preserving underlying cellular functions essential for cell therapies."

###

About SQZ Biotech

SQZ Biotechnologies is a Massachusetts-based, privately held company developing cellular therapies for multiple therapeutic areas using their proprietary cell therapy platform. SQZ enables robust, scalable delivery of materials to direct natural cell functions with minimal impact on cell health and is being used to develop a new generation of therapies. The first applications for the company leverage SQZ's ability to generate target-specific immune responses, both in activation for the treatment of solid tumors, and immune suppression for the treatment of auto-immune diseases. For more information please visit http://www.sqzbiotech.com.

SQZ Contact:

Rebecca Cohen
Senior Manager, Corporate Relations
[email protected]
617-758-8672 ext. 728

Media Contact

Cait Williamson, PhD
LifeSci Public Relations
[email protected]
646-751-4366

Media Contact

Cait Williamson
[email protected]

http://dx.doi.org/10.1073/pnas.1809671115

Share12Tweet7Share2ShareShareShare1

Related Posts

ASTRO-AstraZeneca Small Cell Lung Cancer Therapy Challenge Winners Revealed

November 4, 2025

Extranodal Extension’s Role in Oral Cancer Prognosis

November 4, 2025

Wake Forest University School of Medicine Researchers Develop Cancer Therapy That Drives Tumor Cells Beyond Their Limits

November 4, 2025

RTOG Foundation Launches New Clinical Trial Investigating [177Lu]Lu-DOTA-TATE Therapy for Adult Meningioma Patients

November 4, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1298 shares
    Share 518 Tweet 324
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    313 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    205 shares
    Share 82 Tweet 51
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    138 shares
    Share 55 Tweet 35

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Unraveling How Sugars Influence the Inflammatory Disease Process

Parkinson’s Mouse Model Reveals How Noise Impairs Movement

Demographic Changes May Drive Rise in Drug-Resistant Infections Across Europe

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.