• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, October 12, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Squeezed states of light can improve feedback cooling significantly

Bioengineer by Bioengineer
November 29, 2016
in Science News
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Kristian Rasmussen, DTU

How does the tightrope walker manage to maintain her balance and avoid that fatal drop from the sky? She carefully senses the motion of her body and vibrations of the rope and accordingly compensates any deviation from equilibrium by shifting her center of gravity. In a thermally excited system, the amplitude of the mechanical vibrations are directly linked to the system's temperature. Thus, by eliminating vibrations the system is cooled to a lower effective temperature.

In recent experiments at DTU Physics, researchers have employed a quantum-enhanced feedback technique to dampen the motion of a micron-sized mechanical oscillator, thereby cooling its temperature by more than 140 degrees below room temperature. Most importantly, this work demonstrates a novel application of squeezed light allowing an improved sensitivity to the mechanical motion and thereby a more efficient extraction of information on how the damping feedback should be tailored.

In the experiment, the mechanical motion of a microtoroidal resonator (see. Figure) was continuously sensed using laser light circulating inside the resonator. Using that information an electric feedback force that was always out of phase with the instantaneous motion was tailored and applied – that is, when the motion was directed upwards the feedback force would counteract this by pushing the toroid downwards and vice versa. Using ordinary – classical – laser light, this technique is ultimately limited by the intrinsic quantum noise of the probe laser, and that sets the classical limit for how efficient the feedback cooling can be. As now demonstrated by DTU researchers, this limit can be surpassed by using quantum-engineered squeezed light. In the experiment, an improvement of more than 12% over the classical limiting temperature was achieved. This improvement was limited by inefficiencies of the specific system resulting in a loss of information on the mechanical motion. The full potential of the demonstrated technique can be unfolded by application to state-of-the-art optomechanical systems, holding promises for reaching the motional quantum ground state of a mechanical oscillator in room temperature experiments. Achieving this would pave the way for a plethora of new optomechanical investigations of fundamental quantum physics and constitute a crucial step towards development of new quantum technologies for sensing and information processing based on micromechanical oscillators.

###

Media Contact

Ulrich Busk Hoff
[email protected]
45-45-25-32-64
@DTUtweet

http://www.dtu.dk

############

Story Source: Materials provided by Scienmag

Share12Tweet7Share2ShareShareShare1

Related Posts

Enhancing 2D Transistors: A New Poly Pitch

Enhancing 2D Transistors: A New Poly Pitch

October 12, 2025
Ferroelectric Memristor Memory Revolutionizes AI Training and Inference

Ferroelectric Memristor Memory Revolutionizes AI Training and Inference

October 12, 2025

West African Migrants’ Health Views in Norway: Insights

October 12, 2025

Exploring the Brain: Light and Sound Technology

October 12, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1220 shares
    Share 487 Tweet 305
  • New Study Reveals the Science Behind Exercise and Weight Loss

    103 shares
    Share 41 Tweet 26
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    100 shares
    Share 40 Tweet 25
  • Revolutionizing Optimization: Deep Learning for Complex Systems

    89 shares
    Share 36 Tweet 22

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Enhancing 2D Transistors: A New Poly Pitch

Ferroelectric Memristor Memory Revolutionizes AI Training and Inference

West African Migrants’ Health Views in Norway: Insights

Subscribe to Blog via Email

Success! An email was just sent to confirm your subscription. Please find the email now and click 'Confirm' to start subscribing.

Join 63 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.