• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, January 8, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Spines of life: Fast-breeding sea urchin provides new model for genetic research

Bioengineer by Bioengineer
May 27, 2022
in Biology
Reading Time: 3 mins read
0
a new model for genetic research
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Tsukuba, Japan—Many people may not realize that the humble sea urchin is a titan when it comes to the study of biology. Now, researchers from Japan have discovered that sea urchins could help biological studies go further than ever before.

a new model for genetic research

Credit: University of Tsukuba

Tsukuba, Japan—Many people may not realize that the humble sea urchin is a titan when it comes to the study of biology. Now, researchers from Japan have discovered that sea urchins could help biological studies go further than ever before.

In a study published in this month in Development, Growth and Differentiation, researchers from the University of Tsukuba have revealed that a particular species of sea urchin may be a game changer, opening up new avenues for genetic research.

Sea urchins have been used for over a hundred year as a model for understanding how biological systems work. These organisms have enabled the identification of mechanisms underlying biological phenomena, ranging from gene regulatory networks to the proteins involved in cell cycles. However, there is a catch—the model species used so far take 2 years to reach reproductive maturity, making them unsuitable for genetic studies.

“To be able to study genetics in sea urchins, we need to find species with short breeding cycles, or to speed up the cycles of the current model species,” says senior author of the study, Professor Shunsuke Yaguchi. “In our study, we looked for a species with a short reproductive cycle.”

The researchers identified Temnopleurus reevesii as a candidate species because it only takes 6 months to produce the next generation, and eggs and sperm can be collected continuously throughout the year when kept at a temperature over 20°C. Most other model sea urchins don’t have these features, which make this species useful for culturing in a lab.

The team assembled a draft genome of T. reevesii and constructed two genome databases, TrBase and the Western Pacific Sea Urchin Genome Database (WestPac-SUGDB), the latter containing genomic information on T. reevesii and another model urchin species, Hemicentrotus pulcherrimus. The aim of creating these databases was to provide genetic information and establish a portal site for West Pacific sea urchin genetic data. WestPac-SUGDB also has search programs for comparing the two datasets.

“We predict that these databases will contribute not only to sea urchin genetic research, but also to evolutionary research and comparative genomics,” says Professor Yaguchi.

The results of this study have opened up the possibility of using T. reevesii as a new model species for research in a number of fields, including cell, developmental, experimental, and evolutionary biology. Additionally, the researchers suggest that investigations in the near future will identify another sea urchin species as an improved model organism for medicine and the life sciences.

Original Paper:

The article, “TrBase: A genome and transcriptome database of Temnopleurus reevesii,” was published in Development, Growth and Differentiation at DOI: 10.1111/dgd.12780

Correspondence:

Associate Professor YAGUCHI Shunsuke
Faculty of Life and Environmental Sciences, University of Tsukuba

Related Link:

Faculty of Life and Environmental Sciences
Shimoda Marine Research Center
TrBase: https://cell-innovation.nig.ac.jp/Tree/

 

WestPac-SUGDB: https://cell-innovation.nig.ac.jp/WPAC/

 



DOI

10.1111/dgd.12780

Article Title

TrBase: A genome and transcriptome database of Temnopleurus reevesii

Article Publication Date

22-Apr-2022

Share12Tweet8Share2ShareShareShare2

Related Posts

Clumped Canopy Boosts Crop Yield, Cuts N2O Emissions

Clumped Canopy Boosts Crop Yield, Cuts N2O Emissions

January 7, 2026
Genomic Insights on Malaria Vector Resistance in Africa

Genomic Insights on Malaria Vector Resistance in Africa

January 7, 2026

Imputation Unveils Barley Shoot Meristem Gene Networks

January 7, 2026

Immune and Stress Pathways in Hog Deer Revealed

January 7, 2026

POPULAR NEWS

  • Enhancing Spiritual Care Education in Nursing Programs

    153 shares
    Share 61 Tweet 38
  • PTSD, Depression, Anxiety in Childhood Cancer Survivors, Parents

    143 shares
    Share 57 Tweet 36
  • Impact of Vegan Diet and Resistance Exercise on Muscle Volume

    45 shares
    Share 18 Tweet 11
  • SARS-CoV-2 Subvariants Affect Outcomes in Elderly Hip Fractures

    44 shares
    Share 18 Tweet 11

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Climate Change Pushes North Pacific Storms Poleward

RG3 and Cantharidin Combat Liver Cancer Together

Chemotherapy’s Impact on Ovarian Health: Emerging Solutions

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 71 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.