• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, September 12, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Spinal deformities in Sacramento-San Joaquin delta fish linked to toxic mineral selenium

Bioengineer by Bioengineer
February 24, 2020
in Health
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Ear bones of fish revealed ‘diary of selenium exposure’ that was key to unraveling the mystery

IMAGE

Credit: Fred Feyrer, U.S. Geological Survey


Native fish discovered with spinal deformities in California’s Sacramento-San Joaquin Delta in 2011 were exposed to high levels of selenium from their parents and food they ate as juveniles in the San Joaquin River, new research has found.

The finding published in Environmental Science and Technology indicates that some fish in the region may experience harmful levels of selenium. Selenium is a naturally occurring mineral that is essential to life but turns toxic and can cause deformities at high levels. Deformities were also found in birds exposed to selenium concentrated in agricultural runoff in the same area in the 1980s.

Biologists collected the juvenile fish, minnows known as Sacramento splittail, from a pumping station in the Sacramento-San Joaquin River Delta in 2011. They soon realized that more than 80 percent of the approximately 1,000 collected fish exhibited spinal deformities.

“This was not just a few fish, it was the majority of them,” said Fred Feyrer, a research fish biologist at the U.S. Geological Survey’s California Water Science Center and co-lead of the research.

Clues from Ear Bones

Scientists raised the fish in tanks for several years. In the meantime, they developed laboratory methods to examine the ear bones of the fish for clues about where they had encountered the selenium. Called otoliths, the ear bones record chemical traces of the conditions the fish experience as they grow.

“We found that the otoliths record a diary of selenium exposure from birth to death, and were the key to unraveling this mystery,” said Rachel C. Johnson, a research biologist at NOAA Fisheries’ Southwest Fisheries Science Center and University of California Davis and lead author of the research.

Researchers used high-intensity X-rays at Cornell University’s Cornell High Energy Synchrotron Source to measure selenium concentrations in the otoliths. They revealed that the fish had absorbed selenium from their mothers, and while feeding as juveniles in the San Joaquin River. “They got it from both directions,” Johnson said.

Another recent study by the same authors found high concentrations of selenium in some adult splittail feeding in the San Francisco Estuary. The concentrations exceeded protective criteria set by the U.S. Environmental Protection Agency. Splittail feed heavily on Asian clams, which concentrate selenium while filter feeding. The fish then pass the selenium on to offspring in the yolk of their eggs.

The details of how the fish encountered the selenium could help determine what to do about it, said Robin Stewart, a research hydrologist at the U.S. Geological Survey and coauthor of the research.

“These tools that help us understand where and how it happens will also help inform management agencies how they might best reduce risk,” she said.

Rarely Seen in Wild

The findings raise the question of whether other fish such as salmon also encounter elevated levels of selenium, Johnson said. Scientists rarely see toxic effects of selenium in the wild. Regardless of how often it happens, afflicted fish either die or are quickly consumed by predators.

Sacramento splittail exist only in the Sacramento-San Joaquin Delta, and grow more than a foot long as adults. They reproduce most abundantly in wet years such as 2011, when rivers spread into adjacent floodplains and open new habitat to fish. One question remains: do fish such as the splittail encounter high levels of selenium only in such wet years when the floodplain habitat is available, or more commonly?

“Was this a one-time event?” Stewart asked. “What we don’t know is how frequently this could be happening, because no one is out there looking for these fish before they disappear.”

###

Coauthors of the research represent NOAA Fisheries; U.S Geological Survey; State University of New York College of Environmental Science and Forestry; University of California, Davis; and Cornell University.

Media Contact
Michael Milstein
[email protected]
503-231-6268

Related Journal Article

http://dx.doi.org/10.1021/acs.est.9b06419

Tags: BiologyDevelopmental/Reproductive BiologyEcology/EnvironmentFisheries/AquacultureHydrology/Water ResourcesMarine/Freshwater BiologyPollution/Remediation
Share12Tweet8Share2ShareShareShare2

Related Posts

Addiction-like Eating Tied to Deprivation and BMI

September 12, 2025

Mosquito Gene Response Reveals Japanese Encephalitis Entry

September 12, 2025

Poly-L-Histidine-Coated Nanoparticles for Targeted Doxorubicin Delivery

September 11, 2025

Barriers to Video Visits for Non-English Patients

September 11, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    152 shares
    Share 61 Tweet 38
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    64 shares
    Share 26 Tweet 16
  • A Laser-Free Alternative to LASIK: Exploring New Vision Correction Methods

    48 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Addiction-like Eating Tied to Deprivation and BMI

Mosquito Gene Response Reveals Japanese Encephalitis Entry

Lumpy Skin Disease: Efficacy of Antibacterial Treatments in Cattle

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.