• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, August 19, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Spinal cord stimulation reduces pain and motor symptoms in Parkinson’s disease patients

Bioengineer by Bioengineer
September 28, 2020
in Health
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

In study, 15 patients with long-term PD and chronic pain and mobility impairment showed improvements across multiple measures

IMAGE

Credit: UC San Diego Health Sciences

A team of researchers in the United States and Japan reports that spinal cord stimulation (SCS) measurably decreased pain and reduced motor symptoms of Parkinson’s disease, both as a singular therapy and as a “salvage therapy” after deep brain stimulation (DBS) therapies were ineffective.

Writing in the September 28, 2020 issue of Bioelectronic Medicine, first author Krishnan Chakravarthy, MD, PhD, assistant professor of anesthesiology at University of California San Diego School of Medicine, and colleagues recruited 15 patients with Parkinson’s disease, a neurodegenerative disorder that is commonly characterized by physical symptoms, such as tremors and progressive difficulty walking and talking, and non-motor symptoms, such as pain and mental or behavioral changes.

The mean age of the patients was 74, with an average disease duration of 17 years. All of the patients were experiencing pain not alleviated by previous treatments. Eight had undergone earlier DBS, a non-invasive, pain therapy in which electrical currents are used to stimulate specific parts of the brain. Seven patients had received only drug treatments previously.

Researchers implanted percutaneous (through the skin) electrodes near the patients’ spines, who then chose one of three types of electrical stimulation: continuous, on-off bursts or continuous bursts of varying intensity.

Following continuous programmed treatment post-implantation, the researchers said all patients reported significant improvement, based on the Visual Analogue Scale, a measurement of pain intensity, with a mean reduction of 59 percent across all patients and stimulation modes.

Seventy-three percent of patients showed improvement in the 10-meter walk, a test that measures walking speed to assess functional mobility and gait, with an average improvement of 12 percent.

And 64 percent of patients experienced improvements in the Timed Up and Go (TUG) test, which measures how long it takes a person to rise from a chair, walk three meters, turn around, walk back to the chair and sit down. TUG assesses physical balance and stability, both standing and in motion. Average TUG improvement was 21 percent.

The authors said the findings suggest SCS may have therapeutic benefit for patients with Parkinson’s in terms of treatment for pain and motor symptoms, though they noted further studies are needed to determine whether improved motor function is due to neurological changes caused by SCS or simply decreased pain.

“We are seeing growing data on novel uses of spinal cord stimulation and specific waveforms on applications outside of chronic pain management, specifically Parkinson’s disease,” said Chakravarthy, pain management specialist at UC San Diego Health. “The potential ease of access and implantation of stimulators in the spinal cord compared to the brain suggests that this is a very exciting area for future exploration.”

###

Co-authors include: Rahul Chaturvedi and Rajiv Reddy, UC San Diego; Takashi Agari, Tokyo Metropolitan Neurological Hospital; Hirokazu Iwamuro, Juntendo University, Tokyo; and Ayano Matsui, National Center Hospital of Neurology and Psychiatry, Tokyo.

Media Contact
Scott LaFee
[email protected]

Related Journal Article

http://dx.doi.org/10.1186/s42234-020-00055-3

Tags: Medicine/HealthneurobiologyParkinson
Share12Tweet8Share2ShareShareShare2

Related Posts

Study Finds Over-the-Counter Pill Increases Access to Contraception, OHSU Reports

Study Finds Over-the-Counter Pill Increases Access to Contraception, OHSU Reports

August 19, 2025
Iron Imbalance in Brain and Body Linked to Parkinson’s

Iron Imbalance in Brain and Body Linked to Parkinson’s

August 19, 2025

Study Shows Intensive Blood Pressure Targets Offer Cost-Effective Benefits

August 19, 2025

Pannexin1 Drives Senescence and Fibrosis After AKI

August 19, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    141 shares
    Share 56 Tweet 35
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    80 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    59 shares
    Share 24 Tweet 15
  • Predicting Colorectal Cancer Using Lifestyle Factors

    47 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Study Finds Over-the-Counter Pill Increases Access to Contraception, OHSU Reports

Novel Asymmetrical Molecule Unlocks Perfect Photocatalyst Potential

Iron Imbalance in Brain and Body Linked to Parkinson’s

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.