• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, May 13, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Stem Cells

Spinal cord has successfully been grown in a lab

Bioengineer by Bioengineer
November 30, 2014
in Stem Cells
Reading Time: 2 mins read
1
ADVERTISEMENT
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Researchers from the University of Dresden have used embryonic stem cells to grow an intact spinal cord in a petri dish, the team reported this week. It’s an enormous achievement in a field that has long viewed neural tissue as the ultimate challenge, and one which could give hope to millions of people suffering from spinal cord injuries.

stem cells

Photo credit: Eduardo Zattara (University of Maryland, College Park), Embryology 2012, Marine Biological Laboratory, Woods Hole, and Development. via Flickr.

The spinal cord, a cylinder about the width of a little finger which runs down the backbone and is the core component of the central nervous system, is a hugely complex structure. Creating spinal cord tissue from stem cells has eluded researchers for years.

Professor Elly Tanaka and her research group at the DFG Research Center for Regenerative Therapies Dresden – Cluster of Excellence at the TU Dresden (CRTD) demonstrated for the first time the in vitro growth of a piece of spinal cord in three dimensions.

For many years Elly Tanaka and her research group have been studying the regenerative potential of axolotls at the molecular level. The Mexican salamanders have the potential to regenerate their spinal cord and other organs to restore full functionality after injury. Mammals such as humans are not able to regenerate most organs. The restoration of the spinal cord in axolotl occurs in a three dimensional structure similar to an embryonic spinal cord. Due to their positions in the tissue, cells in the regenerated spinal cord know which function to perform in the restored tissue. “In this study we applied the knowledge gained about the regenerative potential in axolotls to a mammal, the mouse” explains Professor Elly Tanaka.

Single mouse embryonic stem cells embedded in a three-dimensional matrix and were grown in neural differentiation medium led to the clonal development of neuroepithelial cysts. These cysts settled in the midbrain and hindbrain along the neural axis. “Our goal, however, was to generate spinal cord in vitro,” says Dr. Andrea Meinhardt, a postdoc at the CRTD. “For this reason we added retinoic acid to the culture medium on the second day of the 3D cell culture.” The result not only caused the neural tissue to switch to spinal cord but also induced the formation of a local signaling center for forming all the different cell types of the spinal cord. “For the first time we could hereby reconstruct the structure of a typical embryonic neural tube in vitro,” said Andrea Meinhardt. „With this study we have moved a tiny step closer to turn the idea of constructing a three-dimensional piece of spinal cord for transplantation in humans into reality“ says Elly Tanaka.

Story Source:

The above story is based on materials provided byCRTD/DFG-Research Center for Regenerative Therapies Dresden – Cluster of Excellence at the TU Dresden.

Share12Tweet7Share2ShareShareShare1

Related Posts

blank

Human stem cells treat spinal cord injury side effects in mice

October 4, 2016
blank

Research into fly development provides insights into blood vessel formation

September 30, 2016

Fertility genes required for sperm stem cells

September 28, 2016

Regulatory RNA essential to DNA damage response

September 27, 2016
Please login to join discussion

POPULAR NEWS

  • blank

    Volatile-Rich Cap Found Above Yellowstone Magma

    665 shares
    Share 266 Tweet 166
  • Natural Supplement Shows Potential to Slow Biological Aging and Enhance Muscle Strength

    88 shares
    Share 35 Tweet 22
  • The Rise of Eukaryotic Cells: An Evolutionary Algorithm Spurs a Major Biological Transition

    67 shares
    Share 27 Tweet 17
  • Analysis of Research Grant Terminations at the National Institutes of Health

    66 shares
    Share 26 Tweet 17

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Interpersonal Violence Impacts Adolescents, Young Adults

New Research Unveils Key Health Differences Between Men and Women

How DiffInvex Uncovers Cancer’s Genetic Rewiring to Outsmart Chemotherapy

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.