• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, August 27, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Spin-to-charge conversion achieves 95% overall qubit readout fidelity

Bioengineer by Bioengineer
April 1, 2021
in Chemistry
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: ZHANG Qi et al.

The team led by Professor DU Jiangfeng and Professor WANG Ya from the Chinese Academy of Sciences (CAS) Key Laboratory of Microscale Magnetic Resonance of the University of Science and Technology of China put forward an innovative spin-to-charge conversion method to achieve high-fidelity readout of qubits, stepping closer towards fault-tolerant quantum computing.

Quantum supremacy over classical computers has been fully exhibited in some specific problems, yet the next milestone, fault-tolerant quantum computing, still requires the accumulated logic gate error and the spin readout fidelity to exceed the fault-tolerant threshold. DU’s team has resolved the first requirement in the nitrogen-vacancy (NV) center system [Nat. Commun. 6, 8748 (2015)] previously and this work targeted at high-fidelity readout of qubits.

Qubit state, such as spin state, is fragile: a common readout approach may cause the flip between the 0 and 1 states for even a few photons resulting in a reading error. The readout fidelity of traditional resonance fluorescence method is strictly limited by such property. Since the spin state is difficult to measure, researchers blazed a trail to replace it with an easy-to-readout and measurable property: the charge state.

They first compared the optical readout lifetime of the charge state and spin state, finding that charge state is more stable than the spin state by five orders of magnitude. Experiment results showed that the average non-demolition charge readout fidelity reached 99.96%.

Then the team adopted near-infrared (NIR) light (1064 nm) to induce the ionization of the excited spin state, transforming the spin state 0 and 1 to the “electrically neutral” and “negatively charged” charge states respectively. This process converted the spin readout to the charge readout.

The results indicated that the error of traditional resonance fluorescence method reached 20.1%, while the error of this new method can be suppressed to 4.6%.

The article was published in Nature Communications.

This new method is compatible with tradition methods, provisioning a spin readout fidelity exceeding the fault-tolerant threshold in real applications. Thanks to the less damage of NIR light to biological tissues and other samples, this method will also effectively improve the detection efficiency of quantum sensors.

###

Media Contact
Jane FAN Qiong
[email protected]

Related Journal Article

http://dx.doi.org/10.1038/s41467-021-21781-5

Tags: Atomic PhysicsAtomic/Molecular/Particle PhysicsChemistry/Physics/Materials SciencesElectromagneticsOpticsResearch/DevelopmentTechnology/Engineering/Computer Science
Share12Tweet8Share2ShareShareShare2

Related Posts

Innovative Material Design Enables Magnetic Tunability in Quasicrystal Approximants

Innovative Material Design Enables Magnetic Tunability in Quasicrystal Approximants

August 27, 2025
Chemically Tuning Quantum Spin–Electric Coupling in Magnets

Chemically Tuning Quantum Spin–Electric Coupling in Magnets

August 27, 2025

Why Beer Foam Stays So Stable: The Science Behind the Perfect Pour

August 26, 2025

SwRI Scientist Heads Science Team for New NASA Heliophysics AI Foundation Model

August 26, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    149 shares
    Share 60 Tweet 37
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    142 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    115 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    82 shares
    Share 33 Tweet 21

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Organ Preservation: Who Accesses the Data?

Prioritizing Student Mental Health: Key Insights from BMES

Revolutionizing Plant Biology: Advances in Genome Synthesis

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.