• HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Thursday, July 7, 2022
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Spider silk properties analyzed for use as bio-based fibers in the medical field

Bioengineer by Bioengineer
June 21, 2022
in Science News
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Silk has been cultivated for centuries by domesticated silkworms, but it has been difficult to commercially produce spider silk in bulk due to their cannibalistic tendencies. However, spider silk fibers are attracting attention for their fineness, mechanical properties, and lustrous appearance. Spider silk produced through recombinant protein expression systems and chemical synthesis has shown to have superior properties for medical use to prevent the formation of blood clots and have excellent knot strength to endure repetitive loading and unloading. In this study, the cell adhesion behavior of native spider silk was investigated.

Figure 1

Credit: REPRINTED WITH PERMISSION FROM Langmuir 2022, XXXX, XXX, XXX-XXX. COPYRIGHT (2022) AMERICAN CHEMICAL SOCIETY.

Silk has been cultivated for centuries by domesticated silkworms, but it has been difficult to commercially produce spider silk in bulk due to their cannibalistic tendencies. However, spider silk fibers are attracting attention for their fineness, mechanical properties, and lustrous appearance. Spider silk produced through recombinant protein expression systems and chemical synthesis has shown to have superior properties for medical use to prevent the formation of blood clots and have excellent knot strength to endure repetitive loading and unloading. In this study, the cell adhesion behavior of native spider silk was investigated.

The development of cell culture substrates is indispensable for the progress of regenerative medicine. In conventional research, many cell culture substrates made of petroleum-derived polymers have been developed, but the development of protein-derived cell culture substrates has not made much progress. Among the protein-based materials, silkworm silk has been used since ancient times. In recent years, attention has been focused on spider-derived silk, which has better mechanical properties than silkworm silk. However, little is known about the cell behavior on spider silk. Therefore, for this study, researchers lead by Dr. Kenjiro Yazawa of Shinshu University aimed to investigate the cell adhesion behavior on spider silk.

In previous studies, experiments were conducted with recombinant spider silk-like proteins instead of natural spider silk. Therefore, the size of the protein was about 1/10 of that of natural spider silk. The research group that includes Dr. Jun Negishi, an expert in biomaterials believed that it is important to collect spider silk directly from live spiders and observe cell adhesion of natural spider silk.

The researchers prepared three types of spider silk; reeled fibers, film, and nanofiber (non-woven fabric) (Figure 1). It was challenging to wind live spider thread so that it would be oriented in the same direction. However, they were able to achieve this and found that there was a difference in the shape of cell adhesion among the three shapes of spider silk (TOC Graphic).

This study clarified the adhesion behavior of fibroblasts on spider silk, but it is still necessary to investigate whether there is a difference in cell activity depending on the surface topography. For example, if you know that the cell activity is high on a thread or non-woven fabric or that it is low on film, it will be a new finding. This aspect of native spider silk is currently under investigation.

 

                                                       ###

 

This work was financially supported by JSPS Grant-in-Aid for Scientific Research (C) grant no. 21K12305. The WAXS measurement was performed under the approval of the Photon Factory Program Advisory Committee (proposal no. 2021G006).



Journal

Langmuir

DOI

10.1021/acs.langmuir.2c00818

Method of Research

Experimental study

Subject of Research

Not applicable

Article Title

Cell Adhesion Behaviors on Spider Silk Fibers, Films, and Nanofibers

Article Publication Date

10-Jun-2022

Share12Tweet7Share2ShareShareShare1

Related Posts

Illustration compares the traditional method of ethylbenzene dehydrogenation with the new method.

New styrene production method improves stability, dehydrogenation activity

July 7, 2022
New method to autonomously identify novel functional magnetic materials

Towards autonomous prediction and synthesis of novel magnetic materials

July 7, 2022

How nuclear war would affect earth today

July 7, 2022

Green building progress in the “13th Five-Year Plan” of China

July 7, 2022

POPULAR NEWS

  • blank

    Telescopic contact lenses

    40 shares
    Share 16 Tweet 10
  • Oregon State University research finds evidence to suggest Pacific whiting skin has anti-aging properties that prevent wrinkles

    38 shares
    Share 15 Tweet 10
  • The pair of Orcas deterring Great White Sharks – by ripping open their torsos for livers

    37 shares
    Share 15 Tweet 9
  • Emerging Omicron subvariants BA.2.12.1, BA.4 and BA.5 are inhibited less efficiently by antibodies

    37 shares
    Share 15 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Tags

VehiclesViolence/CriminalsWeather/StormsUniversity of WashingtonWeaponryUrogenital SystemVaccinesUrbanizationVaccineZoology/Veterinary ScienceVirologyVirus

Recent Posts

  • New styrene production method improves stability, dehydrogenation activity
  • Towards autonomous prediction and synthesis of novel magnetic materials
  • How nuclear war would affect earth today
  • Green building progress in the “13th Five-Year Plan” of China
  • Contact Us

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
Posting....