• HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Wednesday, June 29, 2022
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Speeding up 19th century oil paintings

Bioengineer by Bioengineer
January 9, 2017
in Science News
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

The fluid and loose brushwork used by J.W.M. Turner and other innovative 19th century artists to capture the momentary effects of light was technically made possible by the addition of "gumtion" or "megilp" to the paint matrix, which gave the paints the jelly-like consistency needed for their impasto-rich paintwork. In the journal Angewandte Chemie, scientists unveil the crucial role lead acetate played in this gelation process.

Historic oil paints were based on pigments mixed with oil and resin. Because of this oily consistency, the artists had to deal with very long drying periods for each color layer and production times of months to even years. That J.M.W. Turner could finish his trendsetting painting "The Dawn of Christianity" from 1841 within days was mainly due to a new and innovative paint matrix: "gumtion", made by mixing of lead acetate, linseed oil, and mastic resin. Its viscoelastic gel properties allowed for the quick subsequent addition of paint layers for the first time–this great facilitation was embraced by the pioneers of modern styles in the 19th century. But what exactly caused gel formation, and how can its chemistry be described today? Laurence de Viguerie from Université Pierre et Marie Curie (Paris) and CNRS and her colleagues (at the Collège de France, among others) have recently unveiled some of the chemical secrets of gumtion.

Following the original recipes, the authors found gel formation when mixing lead acetate, linseed or nut oil, and mastic resin dissolved in turpentine. "Today such syntheses can be described as processes that form organic-inorganic hybrid materials which are known for their wide range of applications", the authors explained. In combination with ancient lake pigments such as madder lake oil paint, the formed gels attain strong elastic properties enabling the artists to paint fast and with thick impasto.

But what exactly causes the gel formation in this mixture of natural materials? Using spectroscopic techniques, the authors identified an oxidative free-radical mechanism, similar to the one responsible for the drying and ageing processes in resins and oils. The network-forming processes are just fastened in the presence of a transition metal–which is lead in this case. The results also indicate that the lead not only catalyzes network formation, but it also can take part in the gel architecture, which is a typical inorganic-organic hybrid metallogel. Thus, it was nothing less than applied chemistry that brought about some of the technical innovations indespensable for making stylistic progress in 19th century paintings.

###

About the Author

Dr. Laurence de Viguerie is a CNRS researcher at the Laboratory of Molecular and Structural Archeology (LAMS, CNRS-UPMC).

Her research interests deal with historical paintings: reconstructions of artistic formulations combined to in-situ analysis.

mailto: [email protected]

Media Contact

Mario Mueller
[email protected]

http://www.wiley.com/wiley-blackwell

############

Story Source: Materials provided by Scienmag

Share12Tweet7Share2ShareShareShare1

Related Posts

Group Leader in Chemical Proteomics, Dr. Guillaume Médard, and his research group in the lab.

Shining some light on the obscure proteome

June 29, 2022
Matthew Goldberg, Associate Research Scientist, Yale Program on Climate Change Communication

Romantic partners can influence each other’s beliefs and behaviors on climate change, new Yale study finds

June 29, 2022

The world’s rivers are changing, here’s how

June 29, 2022

Immune cells anchored in tissues offer unique defenses against pathogens and cancers

June 29, 2022
Please login to join discussion

POPULAR NEWS

  • Pacific whiting

    Oregon State University research finds evidence to suggest Pacific whiting skin has anti-aging properties that prevent wrinkles

    37 shares
    Share 15 Tweet 9
  • University of Miami Rosenstiel School selected for National ‘Reefense’ Initiative focusing on Florida and the Caribbean

    35 shares
    Share 14 Tweet 9
  • Saving the Mekong delta from drowning

    37 shares
    Share 15 Tweet 9
  • Sharks may be closer to the city than you think, new study finds

    34 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Tags

VirologyViolence/CriminalsZoology/Veterinary ScienceUniversity of WashingtonWeather/StormsUrbanizationVaccineUrogenital SystemVirusVaccinesVehiclesWeaponry

Recent Posts

  • Shining some light on the obscure proteome
  • Romantic partners can influence each other’s beliefs and behaviors on climate change, new Yale study finds
  • The world’s rivers are changing, here’s how
  • Immune cells anchored in tissues offer unique defenses against pathogens and cancers
  • Contact Us

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
Posting....