• HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Tuesday, August 9, 2022
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Specialized brain regions recognize vocal cues that don’t involve speech

Bioengineer by Bioengineer
July 28, 2022
in Biology
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

PITTSBURGH, July 28, 2022 – Specific parts of the brain recognize complex cues in human vocal sounds that do not involve speech, such as crying, coughing or gasping—found researchers from the University of Pittsburgh.

Two brain regions specialize at recognizing voices

Credit: Kyle Rupp and Taylor Abel

PITTSBURGH, July 28, 2022 – Specific parts of the brain recognize complex cues in human vocal sounds that do not involve speech, such as crying, coughing or gasping—found researchers from the University of Pittsburgh.

In a paper published today in PLOS Biology, scientists showed that two areas of the auditory cortex are specialized to recognize human voice sounds that, unlike speech, do not carry linguistic meaning. Rather, they help us react to sound cues that allow people to instantly identify characteristics of the person who is speaking, such as gender, approximate age, mood and even height—all without seeing them.

“Voice perception is similar to how humans recognize different faces,” said senior author Taylor Abel, M.D., assistant professor of neurological surgery at Pitt. “Voices that don’t include speech—for example, a baby’s cries, coughing, moaning or exclamations—allow us to gain a lot of information about the person making those vocalizations in the absence of other information about the person.”

Humans live in a world full of sounds, where noises from the environment shape our daily interactions with our surroundings and other people. And even though speech is one of the unique aspects of human communication that does not have direct analogs in the animal world, people do not rely on speech alone to convey auditory information.

Non-speech aspects of voice serve a vital role in our communication toolbox, expanding human ability to express oneself accurately and dynamically. Part of that expression is subconscious, and part of it may be intentionally modulated by the speaker to convey a wide spectrum of emotion, such as happiness, fear or disgust.

Humans are born with the capacity for voice recognition—in fact, babies can recognize their mother’s voice while still in the womb—but that capacity is dynamic, and it continues to evolve throughout adolescence.

Abel, who is a practicing pediatric neurosurgeon specializing in epilepsy, had a unique opportunity to peek at how the human brain responds to voice.

To identify regions of the brain that are responsible for generating seizures in some people with epilepsy, neurosurgeons may implant temporary electrodes into the brain to carefully record its electrical signals. This practice allows physicians to precisely locate the site of the seizure and eventually remove that part of the brain, while sparing the surrounding healthy tissue.

Eight patients with epilepsy consented to participate in a study where Abel and his team used the implanted electrodes to measure which areas of the auditory cortex responded when voice sounds—grunts, yelps, laughs—were presented to the patients.

Using a combination of direct brain recordings and computational modeling, investigators were able to describe in unprecedented detail how voice representation evolves over time and decode when a voice sound had been played based on patterns of neural activity from the auditory cortex.

Researchers found that most of that activity came from two regions in the auditory cortex—folds of the brain’s gray matter known as superior temporal gyrus (STG) and superior temporal sulcus (STS). While prior brain imaging studies showed that the STG and STS are important for voice processing, this study demonstrates that these regions represent voice as a distinct sound category rather than simply representing the physical or acoustic aspects of voice.

This new knowledge about the organization of the voice-recognition system wired in our brains will enable researchers to better understand neurological disorders such as schizophrenia or autism, where voice perception is altered or missing, and even help create better voice assistant devices, which are currently good at recognizing speech but less adept at differentiating between several speakers.

Kyle Rupp, Ph.D., is lead author on the paper; additional authors are Jasmine Hect, Madison Remick, Avniel Ghuman, Ph.D., and Bharath Chandrasekaran, Ph.D., all from Pitt; and Lori Holt, Ph.D., of Carnegie Mellon University.

This research was supported by the National Institutes of Health (grants R21DC019217-01A1 and 2R01DC013315-07).



Journal

PLoS Biology

Article Title

Neural responses in human superior temporal cortex support coding of voice representations

Article Publication Date

28-Jul-2022

Share12Tweet7Share2ShareShareShare1

Related Posts

Schematic view of Wnt signaling in heart tissue.

Future medical applications in drug design

August 9, 2022
Image 1

Robot helps reveal how ants pass on knowledge

August 9, 2022

The walk of Japanese children develops differently from children in other countries

August 9, 2022

Aldosterone linked to increased risk of chronic kidney disease progression and end-stage kidney disease

August 9, 2022

POPULAR NEWS

  • Picture of the horse specimen.

    Ancient DNA clarifies the early history of American colonial horses

    56 shares
    Share 22 Tweet 14
  • The pair of Orcas deterring Great White Sharks – by ripping open their torsos for livers

    66 shares
    Share 26 Tweet 17
  • Ill-fated ‘Into the Wild’ adventurer was victim of unfortunate timing, Oregon State study suggests

    39 shares
    Share 16 Tweet 10
  • Skin: An additional tool for the versatile elephant trunk

    38 shares
    Share 15 Tweet 10

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Tags

WeaponryVehiclesWeather/StormsUrogenital SystemZoology/Veterinary ScienceVirusVirologyUrbanizationUniversity of WashingtonVaccineVaccinesViolence/Criminals

Recent Posts

  • Sexual dysfunction high among women with lung cancer
  • Vancouver researchers suggest air pollution be included as risk factor for patients with lung cancer and have never smoked
  • Association Between KRAS/STK11/KEAP1 Mutations and Outcomes in POSEIDON: Durvalumab ± Tremelimumab + Chemotherapy in mNSCLC
  • Informed consent forms for lung cancer clinical trials may be a barrier to informed trial participation
  • Contact Us

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In