• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, November 5, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Special delivery: Macromolecules via spider’s ‘bite’

Bioengineer by Bioengineer
May 24, 2017
in Biology
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Kyoto University

Kyoto, Japan — Our cells are rich in proteins which are potential targets for therapy. But study of these proteins' behavior, using externally delivered biomacromolecules, has often been stymied by the difficulty of gaining access to the interiors of living cells.

Now scientists at Kyoto University have used a reengineered spider venom peptide to deliver biomacromolecules – such as an antibody — into a cell. Their strategy, appearing in Nature Chemistry, not only allows researchers to track the antibodies visually, but also makes it possible for the antibodies to interact with target proteins, modulating their functions.

"Efficient labeling of intracellular proteins with antibodies allows us to dramatically improve our understanding of their behavior and significance," explains first author Misao Akishiba. "Cells can take in antibodies through membrane-bound vesicles called 'endosomes'. But normally once inside these endosomes, the antibodies have trouble escaping."

The researchers found that a simple redesign of spider venom peptide 'M-lycotoxin' enables the efficient release of antibodies from their endosome cages.

"We took M-lycotoxin and replaced a leucine residue with glutamic acid, which we then called 'L17E'," continues Akishiba. "When L17E enters the cell, it specifically interacts with endosome membranes, breaking them down and releasing the antibodies."

The research team then showed that functional antibodies, such as those involved in suppressing gene expression, could be delivered as well.

"This will benefit not only basic science, but also the development of new treatments and drugs," concludes team leader Shiroh Futaki. "Moreover, this tool could potentially be used to transport other bioactive macromolecules — and even nanoparticles — into cells."

As a next step, the researchers hope to improve the efficiency of macromolecule uptake by endosomes, thereby increasing the amount of cargo that can be transported.

###

The paper "Cytosolic antibody delivery by lipid-sensitive endosomolytic peptide" appeared 22 May 2017 in the Nature Chemistry, with doi: 10.1038/nchem.2779

Kyoto University is one of Japan and Asia's premier research institutions, founded in 1897 and responsible for producing numerous Nobel laureates and winners of other prestigious international prizes. A broad curriculum across the arts and sciences at both undergraduate and graduate levels is complemented by numerous research centers, as well as facilities and offices around Japan and the world. For more information please see: http://www.kyoto-u.ac.jp/en

Media Contact

Raymond Kunikane Terhune
[email protected]
81-757-535-728
@KyotoU_News

http://www.kyoto-u.ac.jp/en

############

Story Source: Materials provided by Scienmag

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Unveiling Wheat’s Defense Against WSMV: A Transcriptomic Study

November 4, 2025
blank

Unveiling Wheat’s Defense Against WSMV: A Transcriptomic Study

November 4, 2025

Unraveling the Connections Between Brain Development and Mental Health

November 4, 2025

ASBMB Announces Launch of Insights in Biochemistry and Molecular Biology, a New Journal Showcasing Breakthroughs Across Molecular Life Sciences

November 4, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1298 shares
    Share 518 Tweet 324
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    313 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    205 shares
    Share 82 Tweet 51
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    138 shares
    Share 55 Tweet 35

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Evaluating Pediatric Medication Errors: A Feasibility Study

Alzheimer’s Disease Disrupts Brain-to-Fat Tissue Communication, Potentially Aggravating Cardiovascular and Metabolic Health

DGIST Unveils Revolutionary Memristor Wafer Integration Technology, Advancing Brain-Inspired AI Chip Development

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.