• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, November 6, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Sophisticated molecular machines in action

Bioengineer by Bioengineer
July 22, 2019
in Chemistry
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Frankfurt researchers solve mechanism of ABC transporter in detail; cover story in Nature

IMAGE

Credit: Christoph Thomas & Robert Tampé (Institute of Biochemistry, Goethe University Frankfurt)

Almost all living organisms – from bacteria to humans – have gate-like protein complexes in their cell membranes that get rid of unwanted or life-threatening molecules. This is not always to human advantage, since in the case of bacteria or cancer cells these complexes, known as ABC transporters, are also responsible for resistance to antibiotics or chemotherapy. Researchers at Goethe University Frankfurt, together with the Max Planck Institute of Biophysics, which is also located in Frankfurt, have now succeeded in decrypting all the stages of the transport mechanism.

Over the past five years, the research group led by Robert Tampé at the Institute of Biochemistry of Goethe University Frankfurt has invested considerable effort in preparing samples of sensitive membrane protein complexes in such a way that they can be examined in membrane environment by means of cryo-electron microscopy. Cryo-electron microscopy delivers high-resolution images by freezing the molecules so that blurring is reduced to a minimum when they are in motion.

If the aim is not only to produce clear images of complex molecules, such as ABC transporters, but also to observe them at work, snapshots of different stages are required. The team of biochemists led by Tampé was able to trigger these stages deliberately by supplying the transporter with different concentrations of ATP and ADP. Without the energy supply of ATP, the transporter is unable to translocate molecules against the concentration gradient between the cell interior and its surroundings.

In the current issue of the journal Nature, Tampé and his colleagues show eight high-resolution conformations of an ABC export complex composed of two different protein subunits. The researchers were also able to make intermediate stages of the transport process visible for the first time. The publishers of Nature have selected this important discovery as the cover story for the current issue.

“Our work could lead to a paradigm shift in structural biology, since it was possible to display all the motions of a cellular machine in almost atomic resolution,” explains Professor Tampé. “Thanks to this unexpected discovery, we can now answer questions about the transport mechanism of ABC transporters which were previously the subject of controversial debate and are highly relevant for medicine.” In addition, the researchers were able to observe for the first time how the gates open inwards or outwards. The resolution of 2.8 Angstrom (1 Angstrom = a ten millionth of a millimeter) is the highest resolution ever achieved in the imaging of an ABC transporter structure with the help of cryo-electron microscopy.

###

Media Contact
Robert Tampé
[email protected]

Related Journal Article

http://dx.doi.org/10.1038/s41586-019-1391-0

Tags: BiochemistryBiologyCell Biology
Share12Tweet8Share2ShareShareShare2

Related Posts

Electroactive Ferrocene Enables Shuttle-Free Aqueous Zinc–Iodine Cells

Electroactive Ferrocene Enables Shuttle-Free Aqueous Zinc–Iodine Cells

November 6, 2025
Exploring 3D Chaotic Microcavities with X-Ray Vision

Exploring 3D Chaotic Microcavities with X-Ray Vision

November 6, 2025

MIT Physicists Uncover Crucial Evidence of Unconventional Superconductivity in Magic-Angle Graphene

November 6, 2025

UVA Engineering Polymer Scientist Honored with American Physical Society’s John H. Dillon Medal

November 6, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1301 shares
    Share 520 Tweet 325
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    313 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    206 shares
    Share 82 Tweet 52
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    138 shares
    Share 55 Tweet 35

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Estrogen Receptor Protects Hippocampal Neurons from Amyloid β

Rice University and Houston Methodist Team Up to Explore Brain-Implant Interface with Support from Dunn Foundation Grant

Parents’ Role in Problem-Solving Education for Toddlers

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 69 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.