• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, September 10, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Soon-to-be world most sensitive gamma ray observatory launches its first set of detectors

Bioengineer by Bioengineer
April 26, 2019
in Chemistry
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

LHAASO is expected to decode cosmic-ray origins

IMAGE

Credit: Institute of High Energy Physics (IHEP) of the Chinese Academy of Science

China’s Large High Altitude Air Shower Observatory (LHAASO) launched its first set of detectors on April 26, 2019. It marked the beginning of comprehensive research effort in observing and detecting very high energy cosmic rays with the anticipated world most sensitive gamma ray detection facility.

Located in the high mountains of Sichuan Province, China, LHAASO’s goal is to discover high energy gamma ray sources, and it is expected to be able to precisely measure the radiation spectrum of very high energy gamma ray sources and energy spectra of various cosmic ray species over a wide range.

LHAASO’s Phase One detectors include the No. 1 Water Cherenkov Detector Array (WCDA-1) with an active area of 2.25 hectares, as well as two wide-field Cherenkov telescopes and 80muon detectors (MDs) and180electromagnetic detectors (EDs).

The full scale WCDA, which will eventually comprise three ponds, is designed to survey for gamma ray sources above 100billion eVs. Assisted by the rotation of the Earth, the WCDA will be able to scan over 60% of the sky each day. It won’t be affected by the light of the sun, moon or stars or by the weather, thus ensuring round-the-clock observation. In the future, the WCDA will be able to record 5 trillion cosmic ray detections each year and obtain more than 4PB of data.

WCDA-1, which has commenced scientific operation, is composed of 900 units. Each is equipped with an 8-inch and a 1.5-inch photomultiplier tube. Already, the sky-surveying sensitivity of WCDA-1 is slightly higher than another international facility, the HAWC Experiment in Mexico built mainly by the United States and Mexico. Wide and deep collaboration between LHAASO and other facilities, including HAWC, will be expected in the detection of the high energy radiation of gamma-ray bursts (GRBs), the detection and observation of extragalactic blazars and the high precision observation of gamma ray sources in the Milky Way, among other activities.

LHAASO is expected to make breakthroughs concerning the origin of cosmic rays, according to Prof. CAO Zhen, LHAASO’s chief scientist and an astrophysicist from the Institute of High Energy Physics (IHEP) of the Chinese Academy of Sciences. Prof. Cao noted that the origin of cosmic rays “has puzzled the world for over a hundred years.”

Both international and domestic experts have been invited to observe and discuss LHAASO’s work. This broad outreach is in line with LHAASO’s goal of international scientific collaboration.

Prof. WANG Yifang, IHEP director, said that astronomical observation “has entered the era of combining multi-wavelength observations and multi-messenger studies together.” He emphasized that LHAASO would enhance major international astronomical observation efforts and boost the progress of such research.

###

More About LHAASO:

LHAASO is one of China’s major national science and technology infrastructure projects and is located in the Mt. Haizi National Reservation at 4,400 meters (14,435 feet) above sea level. The project was approved as part of the country’s “12th Five-year Plan” (2011-2015). Construction began in June 2016 and is expected to be completed in 2021.Since detectors are being distributed across a wide area, LHAASO has begun observation even as construction continues elsewhere on the site.

LHAASO will comprise an array of 5,195 electromagnetic detectors (EDs); an array of 1,171 mu on detectors (MDs); a Water Cherenkov Detector Array (WCDA) spanning three ponds with a total active area of 7.8hectares; and an array of 12 wide-field Cherenkov telescopes (WFCTA), distributed in an open space of 1.3 square kilometers.

LHAASO is expected to achieve a gamma ray sky-surveying sensitivity of 1% crab (the gamma intensity of the standard candle) above 100billion eVs and precise measurement of gamma ray spectra of sources above 50 trillion eVs – an unprecedentedly high level of sensitivity and energy. LHAASO is also expected to measure the spectra of cosmic ray species at high precision from 5×10^13 eVs to 10^18 eVs.

Media Contact
GUO Lijun
[email protected]

Tags: AstronomyAstrophysicsSpace/Planetary Science
Share13Tweet8Share2ShareShareShare2

Related Posts

blank

Modular Organocatalysis Creates BN Isosteres via Wolff Rearrangement

September 10, 2025
Oxford AI Tool Revolutionizes Supernova Discovery Amidst Cosmic Noise

Oxford AI Tool Revolutionizes Supernova Discovery Amidst Cosmic Noise

September 10, 2025

Innovative Methods for Generating Methanol Using Electricity and Biomass

September 9, 2025

Isotope Tafel Analysis Reveals Proton Transfer Kinetics

September 9, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    151 shares
    Share 60 Tweet 38
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    55 shares
    Share 22 Tweet 14
  • First Confirmed Human Mpox Clade Ib Case China

    56 shares
    Share 22 Tweet 14

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Faulty RNA Splicing Hinders Liver Repair in Alcoholism

High-Mobility Group Box 1: Biomarker and Therapy in Neonatal Encephalopathy

Giant Two-Photon Upconversion in 2D Plasmonic Nanocavity

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.