• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, August 3, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Solving a 50-year-old puzzle in signal processing, part two:

Bioengineer by Bioengineer
March 25, 2020
in Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Engineers explore algorithm’s capabilities in special cases ‘on the unit circle’

IMAGE

Credit: Figure courtesy of Alexander Stoytchev.


AMES, Iowa – Iowa State University’s Alexander Stoytchev says it’s one of the “most popular and useful” algorithms around – even though most of us have never heard of it.

But, if you’ve used a cell phone, browsed the internet or needed a medical image, you’ve benefitted from the fast Fourier transform (FFT).

The transform and its inverse (known as the IFFT) have been in use since 1965. For example, in your cell phone the FFT is used to analyze the signal received from the base station (or cell tower). The IFFT solves the inverse problem: it synthesizes the signal that your phone sends to the base station.

In 1969, researchers developed a more useful, generalized version of the FFT known as the chirp z-transform (CZT). But nobody had come up with a generalized version of the IFFT. It was a 50-year-old puzzle in signal processing.

That is, until last fall when two Iowa State engineers – Stoytchev and Vladimir Sukhoy – announced in a research paper they had come up with a closed-form solution for the inverse chirp z-transform (ICZT) and a fast algorithm for computing it. (The paper sparked a lot of interest in the signal-processing community, tallying more than 26,000 accesses since October.)

Now Stoytchev – an associate professor of electrical and computer engineering who’s also affiliated with the university’s Virtual Reality Applications Center – and Sukhoy – a lecturer in electrical and computer engineering – report new research results about their algorithm.

In a paper just published online by Scientific Reports, a Nature Research journal, the two show how their algorithm functions “on the unit circle,” which refers to a special case of its parameters. (Their previous paper only highlighted operations “off the unit circle.”)

The paper details how the algorithm can work with frequency components that are generated by sample points from the unit circle in the complex plane. These points form a contour that is known as the chirp contour. Unlike the IFFT, which can only work with equispaced sampling points that fully cover the unit circle, the ICZT algorithm can work with contours that cover only a fraction of the unit circle. It can also work with contours that wrap around and perform multiple revolutions over the circle. This enables the use of certain (non-orthogonal) frequency components, which lifts one of the main restrictions of the IFFT and could lead to better spectrum utilization.

The paper identifies the parameter values for which the algorithm is numerically accurate and for which it isn’t, and describes how to estimate its accuracy as a function of the parameters. (Technical note: It shows that the singularities of the ICZT of size n are related to the elements of the Farey sequence of order n-1. This is an interesting connection because Farey sequences often appear in number theory.)

The paper demonstrates that, on the unit circle, the ICZT algorithm achieves high accuracy with only 64-bit floating-point numbers and does not require additional numerical precision, making it easier to implement. It reports the algorithm can pair well with the existing CZT algorithm to do back-to-back signal analysis and signal synthesis. And it shows that the algorithm is fast (it operates in what’s known as O(n log n) time).

“This algorithm is more general than the IFFT, but maintains the same speed,” Stoytchev said.

That’s good news for the engineers working to solve all kinds of signal-processing challenges:

“Application domains that could benefit from this,” the Iowa State engineers wrote in the paper, “include signal processing, electronics, medical imaging, radar, sonar, wireless communications, and others.”

###

Media Contact
Alexander Stoytchev
[email protected]

Original Source

https://www.news.iastate.edu/news/2020/03/25/iczt2

Related Journal Article

http://dx.doi.org/10.1038/s41598-020-60878-7

Tags: Algorithms/ModelsCalculations/Problem-SolvingElectrical Engineering/ElectronicsTechnology/Engineering/Computer Science
Share12Tweet8Share2ShareShareShare2

Related Posts

Micro- and Nanoplastics Threaten Early-Life Health: Risks

Micro- and Nanoplastics Threaten Early-Life Health: Risks

August 3, 2025
PI-RADS v2.1 Plus Amide Transfer Boosts Detection

PI-RADS v2.1 Plus Amide Transfer Boosts Detection

August 3, 2025

Satellite and AI Unite to Estimate Underwater Sound Speed

August 3, 2025

Advancing Microplastic Quantification with NMR Spectroscopy

August 3, 2025
Please login to join discussion

POPULAR NEWS

  • Blind to the Burn

    Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    60 shares
    Share 24 Tweet 15
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    52 shares
    Share 21 Tweet 13
  • Dr. Miriam Merad Honored with French Knighthood for Groundbreaking Contributions to Science and Medicine

    46 shares
    Share 18 Tweet 12
  • Study Reveals Beta-HPV Directly Causes Skin Cancer in Immunocompromised Individuals

    38 shares
    Share 15 Tweet 10

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Micro- and Nanoplastics Threaten Early-Life Health: Risks

PI-RADS v2.1 Plus Amide Transfer Boosts Detection

Satellite and AI Unite to Estimate Underwater Sound Speed

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.