• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, October 15, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Soil’s history: A solution to soluble phosphorus?

Bioengineer by Bioengineer
November 14, 2018
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Abantika Debnath.

The Food and Agriculture Organization of the United Nations estimates that around 45 million tons of phosphorus fertilizers will be used around the world in 2018.

Much will be applied to soils that also received phosphorus fertilizers in past years.

According to a new study, much of that could be unnecessary.

"Previous application of phosphorus fertilizers increases the effectiveness of subsequent applications," says Jim Barrow, lead author of the study. Barrow is a scientist at the University of Western Australia.

He says better understanding soil phosphorus dynamics can have many benefits. It could lead to more judicious use of phosphorus fertilizers. "At a world level, phosphorus is a limited resource. We need to use it wisely."

At a local level, excessive use of phosphorus fertilizers can pollute water. And at the farm level, purchasing phosphorus fertilizers is a major expense for farmers. "If farmers use only as much as is required, it will help the environment," Barrow states. "It will also save them money."

When phosphorus fertilizers are applied to soils, only a fraction is taken up by plants. That's because most of the phosphorus is stuck on soil grains; only a small proportion is in solution. "When the portion in solution is high, plants can get phosphorus quickly from the soil," says Barrow. "Low fertilizer application rates are sufficient."

Phosphate, the compound used in fertilizers, can react with and penetrate soil particles. Barrow points out that when this happens, it's "scarcely available to plants. This is a major reason why farmers have to reapply phosphorus fertilizers."

But this has its upside. "When phosphate penetrates soil particles, it makes the soil particles more negatively charged," Barrow explains. Since similar charges repel each other, negatively charged soil particles repel the negatively charged phosphate. That means there is more in solution. Plants get it faster, and therefore need less fertilizer.

Barrow and colleagues explored whether phosphate would continue to penetrate soil particles at the same rate over time. They reasoned that the rate would decrease as the negative charge built up.

They showed that when a lot of phosphorus has been applied over time the penetration of phosphate slows down and ultimately stops. "When this happens, you only need to replace phosphate used (and removed in produce) in the previous year," says Barrow.

It's similar to repairing a gravel road. The potholes and other gaps need to be filled first before a smooth, functional top layer is applied.

Barrow worked with colleagues at Bidhan Chandra Agricultural University in West Bengal, India. They used soil from a site about 65 miles west of the city of Kolkata, India. To mimic phosphorus application over time, the researchers applied phosphorus and then kept the soil at 140°F (60°C) for more than a month.

"It is quite slow at ordinary temperatures," says Barrow. "This way we don't have to wait around for years before we can do an experiment."

The findings can help farmers use phosphorus fertilizers more efficiently. Farmers could also save money. "But these findings need to be conveyed to farmers," says Barrow. "The effectiveness of the soluble phosphate fertilizers has been grossly underestimated."

###

Read more in Soil Science Society of America Journal. Barrow worked with colleagues Abhijit Debnath, Arup Sen, and students at Bidhan Chandra Agricultural University in West Bengal, India.

Media Contact

Susan Fisk
[email protected]
608-273-8091
@ASA_CSSA_SSSA

http://www.agronomy.org

Related Journal Article

http://dx.doi.org/10.2136/sssaj2018.03.0115

Share12Tweet7Share2ShareShareShare1

Related Posts

Chloroplast Genome Study of Agropyron Species Varieties

Chloroplast Genome Study of Agropyron Species Varieties

October 15, 2025
Astrocyte Glycogen Loss Triggers Sex-Dimorphic Behavioral Changes

Astrocyte Glycogen Loss Triggers Sex-Dimorphic Behavioral Changes

October 15, 2025

Key Technical Insights for RNA-Sequencing Experiments

October 15, 2025

Age and Sex Shape Memory and Circadian Rhythms

October 14, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1243 shares
    Share 496 Tweet 310
  • New Study Reveals the Science Behind Exercise and Weight Loss

    105 shares
    Share 42 Tweet 26
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    101 shares
    Share 40 Tweet 25
  • Revolutionizing Optimization: Deep Learning for Complex Systems

    92 shares
    Share 37 Tweet 23

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Emotional Fatigue: Nurses Battling Burnout in Ghana

Mapping Lymph Node Metastasis in Lung Adenocarcinoma

Fasting Reduces Liver Cancer Cell Growth and Alters Proteome

Subscribe to Blog via Email

Success! An email was just sent to confirm your subscription. Please find the email now and click 'Confirm' to start subscribing.

Join 65 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.