• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, October 5, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Soft and comfortable e-textiles that can be used to measure photoplenthysmography

Bioengineer by Bioengineer
March 2, 2021
in Chemistry
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

The performances of fiber optoelectronic components were improved by wrapping electrodes with desired shapes around the thread. Fiber photodiodes were integrated into the fabric to measure the wearer’s pulse from their fingertips

IMAGE

Credit: Korea Institute of Science and Technology(KIST)

Advances in wearable devices have enabled e-textiles, which fuse lightweight and comfortable textiles with smart electronics, and are garnering attention as the next-generation wearable technology. In particular, fiber electronic devices endowed with electrical properties, while retaining the specific characteristics of textiles, are key elements in manufacturing e-textiles.

Optoelectronic devices are generally constructed using layers of semiconductors, electrodes, and insulators; their performance is greatly affected by the size and structure of the electrodes. Fiber electronic components for e-textiles need to be fabricated on thin, pliable threads; since these devices cannot be wider than threads having diameter of a few micrometers, it is a challenge to improve the performances of such fiber electronic components. However, a team of Korean scientists has been receiving attention after developing a new technology to overcome these limitations.

A team of researchers, led by Dr. Hyunjung Yi and Dr. Jung Ah Lim, at the Post-silicon Semiconductor Institute of the Korea Institute of Science and Technology (KIST) announced that they have developed a technique to manufacture fiber electronic components, such as transistors and photodiodes, with desired electrode structures by wrapping. Specifically, the desired electrode array can be fabricated using an inkjet printer, and an electrode thread coated with a semiconductor surface is rolled on top of these electrodes.

In 2019, Dr. Yi and her research team developed a technique to build an electrode array on a given surface by printing carbon nanotube (CNT) ink on a template made of a hydrophilic hydrogel and transferring the CNT ink to the desired surface (Nano Letters 2019, 19, 3684-3691). Once printed on the hydrogel, the CNT electrodes behave in a manner similar to floating on water. Hence, the researchers predicted the possibility of transferring such electrodes intact to the surfaces of fibers by rolling the fibers on the electrodes. In a collaborative study with Dr. Lim and her team, the researchers were able to develop high-performance fiber electronic components without damaging the semiconductor layer or CNT electrodes. The fiber transistors wrapped with CNT electrodes maintained stable performances of at least 80% even with a sharp bend radius of 1.75 mm.

Using the semitransparent property of the CNT electrode, the researchers have also succeeded in developing fiber photodiodes to detect light by wrapping the CNT electrodes around electrode threads coated with a semiconductor that produces current upon absorption of light. The fiber photodiodes can detect a wide range of visible light and have excellent sensitivities that are comparable to those of rigid components. The researchers manufactured a glove from a fabric containing these photodiodes and light-emitting diodes (LEDs). The LEDs produce light, and the photodiodes measure the intensity of the light reflected by the fingers, which changes according to blood flow. Thus, the glove can be used to measure the wearer’s pulse.

Dr. Lim stated that “The finger glove pulse monitor developed by us could offer an alternative to conventional clip-type pulse monitoring device. It has the advantages of being more approachable for patients because of its comfortable and soft texture and of being able to measure the pulse in real time in any time and place.” Dr. Yi, the co-investigator, stated that “This research provides a new approach to electrode fabrication, which remains an important problem to solve in the development of fiber devices. We expect that these findings would advance the field from improving the performances of fiber optoelectronic components to development of fiber electronic devices with complex circuits.”

###

This research was conducted with support from the Ministry of Science and ICT (MSIT) as part of a major KIST research program and as a part of the National Research Foundation of Korea’s Basic Science Research Program and Nano-Material Technology Development Program for core/follow-up studies. The study has been published in the latest issue of “ACS Nano” an international journal in the field of nanomaterials.

Media Contact
Do-Hyun Kim
[email protected]

Related Journal Article

http://dx.doi.org/10.1021/acsnano.0c07143

Tags: Chemistry/Physics/Materials SciencesTechnology/Engineering/Computer Science
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Selective Arylating Uncommon C–F Bonds in Polyfluoroarenes

October 4, 2025
Building Larger Hydrocarbons for Optical Cycling

Building Larger Hydrocarbons for Optical Cycling

October 4, 2025

Scientists Discover How Enzymes “Dance” During Their Work—and Why It Matters

October 4, 2025

Electron Donor–Acceptor Complexes Enable Asymmetric Photocatalysis

October 4, 2025
Please login to join discussion

POPULAR NEWS

  • New Study Reveals the Science Behind Exercise and Weight Loss

    New Study Reveals the Science Behind Exercise and Weight Loss

    94 shares
    Share 38 Tweet 24
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    92 shares
    Share 37 Tweet 23
  • Physicists Develop Visible Time Crystal for the First Time

    75 shares
    Share 30 Tweet 19
  • New Insights Suggest ALS May Be an Autoimmune Disease

    70 shares
    Share 28 Tweet 18

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

LINC01547 Enhances Pancreatic Cancer and Chemoresistance

Psychological Resilience Mediates Care in Nursing Interns

MeaB bZIP Factor Essential for Nitrosative Stress Response

Subscribe to Blog via Email

Success! An email was just sent to confirm your subscription. Please find the email now and click 'Confirm' to start subscribing.

Join 62 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.