• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, January 26, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Sodium-ion batteries: From materials development to technology innovation

Bioengineer by Bioengineer
April 23, 2019
in Chemistry
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Within the TRANSITION Project, KIT, HIU and partners will develop powerful sodium-ion battery prototypes for future application in electro-mobility and stationary energy storage

IMAGE

Credit: Photo: Amadeus Bramsiepe, KIT

The driving force of the TRANSITION project is to make a central contribution to a more sustainable energy storage strategy in Germany. The markets for electromobility and stationary energy storage will grow significantly in the course of the energy turnaround and require more energy efficient and powerful storage technologies. Presently,
lithium-ion batteries are one of the greatest successes for energy storage applications of the last century. LIBs are light, compact and offer outstanding energy and power density, dominating the market for portable electronics, hybrid and electric vehicles. “However, in view of the increasingly growing demand of lithium and raw materials employed in the lithium technology, such as cobalt, concerns has been raised about the future and long-term availability of the critical raw material and cost. In this scenario, sodium-ion batteries represent an alternative low cost and more environmentally friendly energy storage technology,says Professor Stefano Passerini, Director of HIU.

The TRANSITION project will focus on the development of powerful liquid and polymeric sodium-ion batteries employing layered transition metal oxides at the cathode side and biomass derived hard carbon at the anode side. “This is the first German consortium funded by the BMBF to work on the development of up-scaled sodium-ion batteries, covering a broad range of challenges from materials development to prototype cell fabrication, says Passerini. Within the project, his team will develop innovative biomass-derived hard carbon in combination with aqueous binders and aluminum as current collector.

The development of up-scaled sodium ion battery prototypes and the achievement of the desired goals represent a great challenge we can only meet in a network with the complementary competencies of the partners says Stefano Passerini. The team at the Friedrich-Schiller-University Jena (FSU) will coordinate the research activities toward the design of advanced liquid and polymeric electrolyte solutions, while the team at Center for Solar Energy and Hydrogen Research Baden-Württemberg (ZSW) will lead the cobalt free cathode development.

About the TRANSITION project

The three partners of the TRANSITION project will work together toward the development of powerful liquid and polymeric sodium-ion battery prototypes, this way strengthening international competitiveness and supporting Germanys leadership in the field of electrochemical energy storage.

The project funded under the Batteries 2020 Framework Program of the German Federal Ministry of Education and Research involves alongside the three scientific partners a comprehensive industrial advisory board. Within the scientific groups, the leading scientist Professor Stefano Passerini (HIU), Dr. Margret Wohlfahrt-Mehrens from the Center for Solar Energy and Hydrogen Research (ZSW) and Professor Philipp Adelhelm from the Friedrich-Schiller-University Jena (FSU).

###

About the Helmholtz Institute Ulm (HIU)

The HIU was established in January 2011 by Karlsruhe Institute of Technology (KIT), member of the Helmholtz Association, in cooperation with Ulm University. With the German Aerospace Center (DLR) and the Center for Solar Energy and Hydrogen Research Baden-Württemberg (ZSW), two other renowned institutions are involved in the HIU as associated partners. The international team of about 120 scientists at HIU works on the development of future energy storage systems for stationary and mobile use.

Find more on HIU at: http://www.hiu-batteries.de/en/

More about the KIT Energy Center: http://www.energy.kit.edu

Being “The Research University in the Helmholtz Association,” KIT creates and imparts knowledge for the society and the environment. It is the objective to make significant contributions to the global challenges in the fields of energy, mobility and information. For this, about 9,300 employees cooperate in a broad range of disciplines in natural sciences, engineering sciences, economics, and the humanities and social sciences. KIT prepares its 25,100 students for responsible tasks in society, industry, and science by offering research-based study programs. Innovation efforts at KIT build a bridge between important scientific findings and their application for the benefit of society, economic prosperity, and the preservation of our natural basis of life.

This press release is available on the internet at http://www.sek.kit.edu/english/press_office.php.

Media Contact
Monika Landgraf
[email protected]

Original Source

https://www.kit.edu/kit/english/pi_2019_054_sodium-ion-batteries-from-materials-development-to-technology-innovation.php

Tags: Chemistry/Physics/Materials Sciences
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

New Route to Strychnos Alkaloids via Thiophene Cycloadditions

January 23, 2026
Lithium Metal Powers Electrochemical PFAS Reduction Breakthrough

Lithium Metal Powers Electrochemical PFAS Reduction Breakthrough

January 20, 2026

Creating Synthetic Protein-Binding DNA Systems in Cells

January 17, 2026

Chiral Catalysis Powers Rotary Molecular Motors

January 16, 2026
Please login to join discussion

POPULAR NEWS

  • Enhancing Spiritual Care Education in Nursing Programs

    156 shares
    Share 62 Tweet 39
  • PTSD, Depression, Anxiety in Childhood Cancer Survivors, Parents

    149 shares
    Share 60 Tweet 37
  • Robotic Ureteral Reconstruction: A Novel Approach

    80 shares
    Share 32 Tweet 20
  • Digital Privacy: Health Data Control in Incarceration

    62 shares
    Share 25 Tweet 16

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Tracking Corvid Vocalizations with Miniature Tech

Analyzing Risk Factors in Hip Dysplasia via Ultrasound

Gaming Disorder’s Impact on Cognitive Control Revealed

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 71 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.