• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, October 17, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

‘Smart’ segmented ring device delivers medications to stop HIV transmission

Bioengineer by Bioengineer
September 6, 2025
in Biology
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Researchers have designed a device that delivers two medications that help stop HIV transmission.

Although condom usage is the best strategy for preventing HIV transmission, the researchers are working to design a device that can be used by sex workers and in situations where women are not in a position to negotiate condom use.

The device is an intravaginal ring (IVR ) that can be inserted into the female genital tract where it will deliver medications known to decrease the transmission of HIV. The researchers examined how effectively their IVR delivered two medications – hydroxychloroquine (HCQ), an FDA approved medication, and a nanomedicine gene therapy developed by the team in previous research. Their results were published in a recent study.

“We’ve specifically engineered a combination IVR that can deliver two unique medications targeting different aspects of the HIV infection process,” said Emmanuel Ho, a professor in the University of Waterloo’s School of Pharmacy and study author. “Before, only one drug could be delivered from an intravaginal ring.”

The ring is made of medical-grade plastic and contains two segmented sections. One section is solid and coated in a pH-sensitive polymer that releases the customized gene-therapy treatment specifically during sexual intercourse. The other half is a hollow ring with tiny pores that releases HCQ slowly over twenty-five days.

The HCQ is the first line of defence that reduces the immune cell activation – meaning HIV cells have fewer host target cells to interact with. Doing this buys time for the gene therapy treatment which comes in specifically during sexual intercourse to further suppress the expression of cellular receptors that HIV cells attach to.

The team, which has previously partnered with the University of Nairobi in Kenya on related research, recognizes the importance of using medications as judiciously as possible given potentially limited healthcare resources.

The researchers wanted to have a system that can be placed in the vaginal tract but that only acts when there is sexual intercourse. The presence of semen increases the pH of the genital tract. Therefore, they designed the “smart” gene-therapy segment of the IVR to detect that change in pH and to release the nanomedicine at that point in time only.

“This IVR system will help women to protect themselves against HIV infection and greatly reduce drug usage when it is not necessary,” says Yannick Traore, a recent Waterloo PhD graduate and lead author on the study. “We are hoping that this will reduce the cost of drug therapy and also prevent users from developing drug resistance.”

The unique, segmented design of the IVR is effective. In lab tests, the HCQ segment successfully released the drug slowly and effectively over 25 days and the gene therapy segment responded to the presence of seminal fluid simulant by releasing 20 times more nanomedicine than was released in an environment of only vaginal fluid simulant. The next steps involve testing the IVR in animal models.

###

The study was recently published in the journal Drug Delivery and Translation Research and features authors from Waterloo and the University of Manitoba.

Media Contact
Ryon Jones
[email protected]

Tags: AIDS/HIVAlternative MedicineBiomedical/Environmental/Chemical EngineeringDisease in the Developing WorldHealth CareHealth Care Systems/ServicesHealth ProfessionalsMedicine/HealthResearch/Development
Share12Tweet8Share2ShareShareShare2

Related Posts

Genotype-Environment Interactions in Pejerrey Sex Differentiation

Genotype-Environment Interactions in Pejerrey Sex Differentiation

October 17, 2025
Enterobacter and Bacillus Enhance Composting, Cadmium Immobilization

Enterobacter and Bacillus Enhance Composting, Cadmium Immobilization

October 16, 2025

Rhythmic Gene Conservation Uncovered in Autotetraploid Potato

October 16, 2025

Vanderbilt Researcher Overcomes Major Challenge in AI-Driven Drug Discovery

October 16, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1254 shares
    Share 501 Tweet 313
  • New Study Reveals the Science Behind Exercise and Weight Loss

    106 shares
    Share 42 Tweet 27
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    102 shares
    Share 41 Tweet 26
  • Revolutionizing Optimization: Deep Learning for Complex Systems

    93 shares
    Share 37 Tweet 23

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Zambian Views Challenge Simplistic Global Health Decolonization

O-GlcNAc Transferase Drives Lumbar Joint Degeneration

Fatigued Hip Abductors Impact Biomechanics in Single-Leg Landings

Subscribe to Blog via Email

Success! An email was just sent to confirm your subscription. Please find the email now and click 'Confirm' to start subscribing.

Join 65 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.