• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Wednesday, May 31, 2023
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Smart road planning could boost food production while protecting tropical forests

Bioengineer by Bioengineer
December 15, 2016
in Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Jianchu Xu & Biaoyun Huai

Conservation scientists have used layers of data on biodiversity, climate, transport and crop yields to construct a color-coded mapping system that shows where new road-building projects should go to be most beneficial for food production at the same time as being least destructive to the environment.

Researchers from the University of Cambridge, UK, the Kunming Institute of Botany and the World Agroforestry Centre in China say their study, publishing on December 15th, 2016 in PLOS Biology, is an attempt to explore a more "conciliatory approach" in the hope of starting fruitful discussions between developers and conservation experts.

The hope is that this "trade-off" strategy might guide governments, investors and developers to focus on road expansions that make the most difference for current agricultural areas, rather than projects that threaten to open up significant natural habitats for conversion to farmland.

As a proof of concept, scientists applied their technique to a specific sub-region: the Greater Mekong in Southeast Asia – one of the most biologically important regions in the world, and a place that has lost almost a third of its tropical forest since the 1970s.

They found that a number of current road proposals in Vietnam, Laos, Myanmar and Cambodia could destroy a wide swath of habitat while providing little benefit for populations and food security. They also found areas where new roads could increase food production and connectivity with limited environmental cost.

They have called on organisations such as the newly established Asian Infrastructure Investment Bank as well as Asian Development Bank to use such analyses when considering investment in future road expansion projects in the Mekong region – an area undergoing rapid development.

"It is estimated that by 2050 we will build 25 million km of new road lanes, the majority of which will be in the developing world," says Andrew Balmford, Professor of Conservation Science at Cambridge.

"Conservationists can appear to oppose nearly all new infrastructure, while developers and their financial backers are often fairly mute on the environmental impact of their proposals. This can lead to a breakdown in communication."

"The Mekong region is home to some of the world's most valuable tropical forests. It's also a region in which a lot of roads are going to be built, and blanket opposition by the conservation community is unlikely to stop this," says Jianchu Xu, a professor at the Kunming Institute of Botany in China and regional coordinator for the World Agroforestry Centre, East and Central Asia Regional Office.

"Studies like ours help pinpoint the projects we should oppose most loudly, while transparently showing the reasons why and providing alternatives where environmental costs are lower and development benefits are greater. Conservationists need to be active voices in infrastructure development, and I think these approaches have the potential to change the tone of the conversation," says Prof Xu. "If new roads are deployed strategically, and deliberately target already-cleared areas with poor transport connectivity, this could attract agricultural growth that might otherwise spread elsewhere."

For Balmford, this is perhaps the crux of the argument, and something he has long been vocal about: "By increasing the crop yield of current agricultural networks, there is hope that food needs can be met while containing the expansion of farming and so sparing natural habitats from destruction. The location of infrastructure, and roads in particular, will play a major role in this."

However, the researchers caution that the channeling of roads into less damaging, more rewarding areas will have to go hand-in-hand with strengthening protection for globally significant habitats such as the remaining forests of the Mekong.

###

In your coverage please use this URL to provide access to the freely available article in PLOS Biology: http://dx.plos.org/10.1371/journal.pbio.2000266

Citation: Balmford A, Chen H, Phalan B, Wang M, O'Connell C, Tayleur C, et al. (2016) Getting Road Expansion on the Right Track: A Framework for Smart Infrastructure Planning in the Mekong. PLoS Biol 14(12): e2000266. doi:10.1371/journal.pbio.2000266

Funding: Chinese Academy of Sciences' Frontier Science Key Project (grant number QYZDY-SSW-SMC014). Received by JX. The funder had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. The Federal Ministry for Economic Cooperation and Development, Germany (grant number #13.1432.7-001.00). Received by JX. The funder had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

Media Contact

Xu Jianchu
[email protected]

http://www.plos.org

############

Story Source: Materials provided by Scienmag

Share13Tweet8Share2ShareShareShare2

Related Posts

Scientist in laboratory

Biological cleanup discovered for certain “forever chemicals”

May 31, 2023
Anomalodonta and vanuxemia

The clams that fell behind, and what they can tell us about evolution and extinction

May 31, 2023

Shedding light on the complex flow dynamics within the small intestine

May 31, 2023

Genetic change increased bird flu severity during U.S. spread

May 30, 2023
Please login to join discussion

POPULAR NEWS

  • plants

    Plants remove cancer causing toxins from air

    39 shares
    Share 16 Tweet 10
  • Element creation in the lab deepens understanding of surface explosions on neutron stars

    36 shares
    Share 14 Tweet 9
  • Groundbreaking study uncovers first evidence of long-term directionality in the origination of human mutation, fundamentally challenging Neo-Darwinism

    115 shares
    Share 46 Tweet 29
  • How life and geology worked together to forge Earth’s nutrient rich crust

    35 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Biological cleanup discovered for certain “forever chemicals”

The clams that fell behind, and what they can tell us about evolution and extinction

Shedding light on the complex flow dynamics within the small intestine

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 50 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In