• HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Wednesday, July 6, 2022
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Smart implants to monitor healing

Bioengineer by Bioengineer
June 23, 2022
in Health
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Spinal fusion—fusing two vertebrae together—can treat a wide variety of spinal disorders. Often, surgeons will use a cage to provide support where the disk once was between the vertebrae. But what if those cages could support the spine’s healing in more ways than one?

Spinal Cage Close-Up

Credit: iSMaRT Lab

Spinal fusion—fusing two vertebrae together—can treat a wide variety of spinal disorders. Often, surgeons will use a cage to provide support where the disk once was between the vertebrae. But what if those cages could support the spine’s healing in more ways than one?

Researchers at the University of Pittsburgh Swanson School of Engineering are creating patient-specific 3D-printed smart metamaterial implants that double as sensors to monitor spinal healing. A paper detailing their work was recently published in the journal Advanced Functional Materials.

“Smart implants can provide real-time biofeedback and offer many therapeutic and diagnostic benefits,” said Amir Alavi, assistant professor of civil and environmental engineering, whose iSMaRT Lab led the research. “But it is very challenging to integrate bulky circuits or power sources into the small area of implants. The solution is to use the implant matrix as an active sensing and energy harvesting medium. That’s what we’ve been focused on.”

The Intelligent Structural Monitoring and Response Testing (iSMaRT) Lab has developed a new class of multifunctional mechanical metamaterials, which act as their own sensors, recording and relaying important information about the pressure and stresses on its structure. The so-called “meta-tribomaterials” a.k.a. self-aware metamaterials, generate their own power and can be used for a wide array of sensing and monitoring applications. 

The material is designed such that under pressure, contact-electrification occurs between its conductive and dielectric microlayers, creating an electric charge that relays information about the condition of the material matrix. In addition, it naturally inherits the outstanding mechanical tunability of standard metamaterials. The power generated using its built-in triboelectric nanogenerator mechanism eliminates the need for a separate power source, and a tiny chip records data about the pressure on the cage, which is an important indicator of healing. The data can then be read noninvasively using a portable ultrasound scanner.

Not only is the proposed cage unique in its sensing capabilities, but it’s also made of a highly tunable material that can be customized to the patient’s needs.

“Spinal fusion cages are being widely used in spinal fusion surgeries, but they’re usually made of titanium or PEEK polymer materials (a semi-crystalline, high-performance engineering thermoplastic) with certain mechanical properties,” explained Alavi. “The stiffness of our metamaterial interbody cages can be readily tuned. The implant can be 3D-printed based on the patient’s specific anatomy before surgery, making it a much more natural fit.”

The team has successfully tested the device in human cadavers and are looking to move on to animal models next. Because the material itself is incredibly tunable and scalable, the smart sensor design could be adapted to many other medical applications in the future, like cardiovascular stents or components for knee or hip replacements.

“This is a first-of-its-kind implant that leverages advances in nanogenerators and metamaterial to build multifunctionality into the fabric of medical implants,” said Alavi. “This technological advancement is going to play a major part in the future of implantable devices.”

The paper, “Patient-Specific Self-Powered Metamaterial Implants for Detecting Bone Healing Progress,” (DOI: 10.1002/adfm.202203533) was published in Advanced Functional Materials. It was coauthored by researchers and surgeons at the University of Pittsburgh, Georgia Institute of Technology, the Beijing Institute of Nanoenergy and Nanosystems, and the Allegheny Health Network Department of Neurosurgery.



Journal

Advanced Functional Materials

DOI

10.1002/adfm.202203533

Article Title

Patient-Specific Self-Powered Metamaterial Implants for Detecting Bone Healing Progress

Share12Tweet7Share2ShareShareShare1

Related Posts

Syngap Research Fund Logo

Leon & Friends, SynGAP Research Fund USA & SRF Europe partner to grant €180,000 to Professor Courtney of Turku Bioscience Centre, Finland

July 6, 2022
Adolescent childbirth remains associated with a poor maternal-fetal prognosis in Cote d'Ivoire

Adolescent childbirth remains linked to poor outcomes for both mother and child in Cote d’Ivoire

July 6, 2022

Shapeshifting microrobots can brush and floss teeth

July 5, 2022

UCI researcher leads study linking ALS to immune and central nervous systems

July 5, 2022

POPULAR NEWS

  • blank

    Telescopic contact lenses

    40 shares
    Share 16 Tweet 10
  • Oregon State University research finds evidence to suggest Pacific whiting skin has anti-aging properties that prevent wrinkles

    38 shares
    Share 15 Tweet 10
  • Emerging Omicron subvariants BA.2.12.1, BA.4 and BA.5 are inhibited less efficiently by antibodies

    37 shares
    Share 15 Tweet 9
  • The pair of Orcas deterring Great White Sharks – by ripping open their torsos for livers

    37 shares
    Share 15 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Tags

Violence/CriminalsVaccineWeaponryZoology/Veterinary ScienceWeather/StormsUrogenital SystemUrbanizationVaccinesVirologyVehiclesVirusUniversity of Washington

Recent Posts

  • New imaging technique allows researchers to see gene expression in brains of live mice in real time
  • Gecko feet are coated in an ultra-thin layer of lipids that help them stay sticky
  • Leon & Friends, SynGAP Research Fund USA & SRF Europe partner to grant €180,000 to Professor Courtney of Turku Bioscience Centre, Finland
  • Deep Longevity granted the first microbiomic aging clock patent
  • Contact Us

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
Posting....