• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, July 26, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Smart buildings face challenges but have plenty of potential

Bioengineer by Bioengineer
November 20, 2019
in Science News
Reading Time: 3 mins read
0
ADVERTISEMENT
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Mohamed Ouf believes fully automated structures will revolutionize occupant comfort and energy efficiency

IMAGE

Credit: Concordia University

We often hear the word “smart” applied to everyday objects: smartphones, smart TVs, smart appliances — and now, smart buildings.

The idea of the smart building is still young. There is no accepted definition yet, but one of the best examples that illustrates the concept is occupant-centric control (OCC). This involves using data gathered from occupants, the indoor environment and the outdoor climate to optimize occupant comfort and control and energy efficiency.

The building’s critical functions — lighting, heating, AC, window blinds and so on — would be run by a control system that learns information like room occupancy patterns, light use and temperature adjustment. For buildings with dozens or hundreds of occupants, this can have wide-ranging effects on overall energy costs.

However, while the concept of the smart building is exciting to architects and engineers, it has not yet been widely seen in a real building. There has been research, experimentation and simulations, but overall the implementation of the OCC principle has been unfocussed and inconsistent.

In a new paper published in the journal Building and Environment, Mohamed Ouf looks at case studies in the existing OCC research and assesses the path forward. The paper was co-written with June Young Park at the University of Texas at Austin and colleagues at Carleton University, ETH Zürich and the University of Southern Denmark.

“We scanned the literature for relevant work that has been done on this topic and analyzed its different attributes in detail,” says Ouf, an assistant professor in the Department of Building, Civil and Environmental Engineering at the Gina Cody School of Engineering and Computer Science.

“We realized that very few researchers have been able to actually implement these control approaches in real buildings for many logistical reasons.”

Ouf is also one of six members of Concordia’s new interdisciplinary Smart, Sustainable and Resilient Communities and Cities research team, which aims to come up with solutions to create more sustainable, accessible and inclusive urban spaces. The team, led by Canada Excellence in Research Chair (CERC) Ursula Eicker, is being officially introduced Tuesday, Nov. 12, at Concordia’s 4th Space.

Building up the field’s foundation

As Ouf and his colleagues point out, research in the field of OCC is still relatively scarce. They identified 120 publications on the topic but only 42 studies included field implementation. Most are conceptual studies or simulations. All of them skewed toward North American or European standards and toward academic or office buildings.

The researchers further identified several challenges facing OCC implementation based on their review of the existing research.

The field’s newness means there is still no agreed-upon definition of what the term even means. Does the control approach prioritize occupancy patterns? Or does it focus on occupant behaviour and their interactions with building systems? How much physical control should an occupant have in an automated building? Which metrics — comfort or energy efficiency — are prioritized, if either?

Second, OCC’s reliance on data means serious technological and privacy issues need to be addressed. The current research largely avoids studies of interconnection between different indoor environments, so a whole-building approach, which will be needed as the field advances, will require significant networking and software development. As well, steps must be taken to ensure occupants’ data information is secure.

Given all these avenues of further study, Ouf says he is optimistic about OCC’s future.

“This whole niche of occupant-centric controls is still very new and provides exciting opportunities to combine advancements in data science and artificial intelligence with building engineering,” he says.

“Luckily, I’m currently establishing a lab at Concordia to implement and experiment with OCC in a real building environment. We will have four offices that are heavily instrumentalized with sensors and actuators to analyze occupant comfort and interactions with building systems. We will also develop new control algorithms with the goal of improving energy efficiency as well as comfort.”

###

Media Contact
Patrick Lejtenyi
[email protected]
514-848-2424 x5068

Original Source

https://www.concordia.ca/news/stories/2019/11/12/smart-buildings-face-lots-of-challenges-but-have-plenty-of-potential-says-concordia-researcher.html

Related Journal Article

http://dx.doi.org/10.1016/j.buildenv.2019.106351

Tags: Computer ScienceIndustrial Engineering/ChemistrySoftware EngineeringTechnology/Engineering/Computer ScienceUrbanization
Share12Tweet8Share2ShareShareShare2

Related Posts

Additive Manufacturing of Monolithic Gyroidal Solid Oxide Cells

July 20, 2025

Machine Learning Uncovers Sorghum’s Complex Mold Resistance

July 20, 2025

Pathology Multiplexing Revolutionizes Disease Mapping

July 20, 2025

Single-Cell Atlas Links Chemokines to Type 2 Diabetes

July 20, 2025
Please login to join discussion

POPULAR NEWS

  • Blind to the Burn

    Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    62 shares
    Share 25 Tweet 16
  • AI Achieves Breakthrough in Drug Discovery by Tackling the True Complexity of Aging

    70 shares
    Share 28 Tweet 18
  • USF Research Unveils AI Technology for Detecting Early PTSD Indicators in Youth Through Facial Analysis

    43 shares
    Share 17 Tweet 11
  • Dr. Miriam Merad Honored with French Knighthood for Groundbreaking Contributions to Science and Medicine

    46 shares
    Share 18 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Additive Manufacturing of Monolithic Gyroidal Solid Oxide Cells

Machine Learning Uncovers Sorghum’s Complex Mold Resistance

Pathology Multiplexing Revolutionizes Disease Mapping

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.