• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, September 10, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Small precipitates make big difference in mitigating strength-ductility tradeoff

Bioengineer by Bioengineer
February 26, 2020
in Chemistry
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: PENG Shenyou

Researchers from the Institute of Mechanics of the Chinese Academy of Sciences, teaming up with scientists from Singapore and the U.S., have found that nanoscale precipitates provide a unique sustainable dislocation source at sufficiently high stress.

The scientists discovered that densely dispersed nanoprecipitates simultaneously serve as dislocation sources and obstacles, leading to a sustainable and self-hardening deformation mechanism that enhances ductility and strength. The results were published in PNAS on Feb. 24, 2020.

In structural materials, resistance against deformation is of vital importance, specifically resistance to the initiation of plastic deformation or yielding; the stress at this point represents the strength of the material. Meanwhile, how much a metal can deform plastically – its ductility – is another important measure. Both strength and ductility depend on the movement of metal dislocations.

Movement of a dislocation becomes more difficult if some barrier or discontinuity enters the path of the dislocation, that is, the materials are hardened. Among many hardening routines, precipitate hardening has been well established and widely employed in engineering materials like Al alloys, Ni super alloys, steel, and recently discovered high-entropy alloys.

Precipitates serve as obstacles to dislocation glide and cause hardening of the material. However, they may lead to premature failure and decreased ductility. Obstacles to dislocation glide often lead to high stress concentration and even microcracks, a cause of progressive strain localization and the origin of the strength-ductility conflict.

According to the researchers, the key to mitigating the conventional strength-ductility tradeoff is to employ a mild yet homogeneous hardening mechanism at a high stress level. Nanoprecipitates provide a sustainable and self-hardening deformation mechanism that enhances ductility and strength. The condition for achieving sustainable dislocation nucleation from a nanoprecipitate is governed by the lattice mismatch between the precipitate and matrix.

Dr. PENG Shenyou, author of the study, said “The interplay of the two length scales, precipitate size and spacing, can be utilized as an optimal design motif to produce a superb combination of strength and ductility, as well as provide a criterion for selecting precipitate size and spacing in material design.”

These findings establish a foundation for strength-ductility optimization through densely dispersed nanoprecipitates in multiple-element alloy systems.

###

The research was support by the National Natural Science Foundation of China and the Strategic Priority Research Program of the Chinese Academy of Sciences.

Media Contact
PENG Shenyou
[email protected]

Related Journal Article

http://dx.doi.org/10.1073/pnas.1914615117

Tags: Chemistry/Physics/Materials SciencesNanotechnology/MicromachinesParticle Physics
Share12Tweet8Share2ShareShareShare2

Related Posts

When Magnetic Moments Clash: How Quantum Mechanics Unlocks the Secrets of Iron Catalysts

When Magnetic Moments Clash: How Quantum Mechanics Unlocks the Secrets of Iron Catalysts

September 10, 2025
blank

Modular Organocatalysis Creates BN Isosteres via Wolff Rearrangement

September 10, 2025

Oxford AI Tool Revolutionizes Supernova Discovery Amidst Cosmic Noise

September 10, 2025

Innovative Methods for Generating Methanol Using Electricity and Biomass

September 9, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    151 shares
    Share 60 Tweet 38
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    57 shares
    Share 23 Tweet 14
  • First Confirmed Human Mpox Clade Ib Case China

    56 shares
    Share 22 Tweet 14

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Bioengineered Lymph Nodes Provide New Insights into Human Immunity

Proximity Labeling Reveals EFCAB5 Regulates Sperm Motility

New JNCCN Study Introduces Simplified Method to Detect Harmful Medications in Older Cancer Patients

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.