• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Friday, January 27, 2023
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Small asteroids are probably young

Bioengineer by Bioengineer
November 30, 2022
in Chemistry
Reading Time: 4 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

 

Simulation of the SCI impact. a) – c) Snapshots of the simulation at different times. At t = 1200s, the development of the crater is over. d) SCI crater on the asteroid Ryugu. The key characteristics of the observed crater, including the displacement of the boulders, are recreated in the simulation.

Credit: © Courtesy of Martin Jutzi

 

The Hayabusa2 spacecraft was developed in order to study the history of the asteroid Ryugu, and collected samples and returned them to earth for laboratory analysis. The project participants are Dr. Martin Jutzi and Dr. Sabina Raducan, both from the Physical Institute of the University of Bern, Department for Space Research and Planetology (WP), and are members of the National Center of Competence in Research (NCCR) PlanetS. Under their leadership, in a study which has recently been published in Nature Communications, the team has presented new findings on the formation and development of asteroids.

Rules on the development of craters help with dating asteroids

To explore the characteristics of asteroids, during the space mission Hayabusa2, a Small Carry-on Impactor was fired at the surface of the asteroid Ryugu. “The crater made by the impact was far larger than expected. We therefore tried to reproduce the results of the impact on Ryugu with the use of simulations, to ascertain the kind of characteristics the material is required to have on the surface of the asteroid,” explains Martin Jutzi.

The nature and the size of an impact crater on an asteroid are influenced by various factors. Firstly, by the specific characteristics of the projectile, and secondly, by the characteristics of the asteroid—its strength or gravity, for example. “The size and nature of the crater resulting from the impact can lead to a direct diagnosis of the material characteristics and the near-surface structure of the asteroid,” explains Jutzi. The study of the crater formation process therefore has important implications for the understanding of the geological and geophysical development of asteroids.

“So far, the way in which the formation of craters works at low gravity has largely remained unexplored. This is because the conditions of the impact cannot be simulated in laboratory experiments on Earth,” explains Sabina Raducan, who is managing the project together with Martin Jutzi. The researchers show that the asteroid probably has a very loose internal structure and is only held together by very small cohesive forces and gravitational interactions. “On the basis of these conditions, we are able to use our numerical simulations to reproduce the outcome of the impact on Ryugu,” explains Raducan.

The relationships between the characteristics of the projectiles and the size of the crater derived from the results indicate that the surfaces of small asteroids must be very young. “Our results also show that low cohesion can have a significant impact on crater formation. On Ryugu, there are various geological surface units that have different ages. This may be attributable to the influence of cohesion,” adds Jutzi.

Important findings for DART

The work of Jutzi and Raducan is also important for the “Double Asteroid Redirection Test” (DART) mission by NASA, in which the scientists are also taking part. DART is the first full test in the world regarding planetary defense against the possible impact of asteroids on Earth. On 27 September 2022, as part of the DART mission a space probe crashed into the asteroid Dimorphos to deflect the asteroid from its orbit. “The findings of the simulations for the impact on Ryugu also help with analyzing the results of the DART mission”, explains Jutzi. “We are working on applying the newly developed models to DART in order to gain insights into the characteristics of Dimorphos. Our initial simulations look very promising,” adds Raducan.

Publication:

Martin Jutzi, Sabina D. Raducan, Yun Zhang, Patrick Michel, and Masahiko Arakawa: Constraining surface properties of asteroid (162173) Ryugu from numerical simulations of Hayabusa2 mission impact experiment, Nature Communications, November 2022

DOI: s41467-022-34540-x

Bernese space exploration: With the world’s elite since the first moon landing

When the second man, “Buzz” Aldrin, stepped out of the lunar module on July 21, 1969, the first task he did was to set up the Bernese Solar Wind Composition experiment (SWC) also known as the “solar wind sail” by planting it in the ground of the moon, even before the American flag. This experiment, which was planned, built and the results analyzed by Prof. Dr. Johannes Geiss and his team from the Physics Institute of the University of Bern, was the first great highlight in the history of Bernese space exploration.

Ever since Bernese space exploration has been among the world’s elite, and the University of Bern has been participating in space missions of the major space organizations, such as ESA, NASA, and JAXA. With CHEOPS the University of Bern shares responsibility with ESA for a whole mission. In addition, Bernese researchers are among the world leaders when it comes to models and simulations of the formation and development of planets.

The successful work of the Department of Space Research and Planetary Sciences (WP) from the Physics Institute of the University of Bern was consolidated by the foundation of a university competence center, the Center for Space and Habitability (CSH). The Swiss National Fund also awarded the University of Bern the National Center of Competence in Research (NCCR) PlanetS, which it manages together with the University of Geneva.



Journal

Nature Communications

DOI

10.1038/s41467-022-34540-x

Method of Research

Computational simulation/modeling

Article Title

Constraining surface properties of asteroid (162173) Ryugu from numerical simulations of Hayabusa2 mission impact experiment

Article Publication Date

30-Nov-2022

Share12Tweet8Share2ShareShareShare2

Related Posts

Qubits on strong stimulants

Qubits on strong stimulants

January 26, 2023
Quantum sensors see Weyl photocurrents flow

Quantum sensors see Weyl photocurrents flow

January 26, 2023

Secret recipe for limonoids opens door for bee-friendly crop protection

January 26, 2023

Argonne Distinguished Fellow Linda Young to receive honorary doctorate

January 26, 2023

POPULAR NEWS

  • Jean du Terrail, Senior Machine Learning Scientist at Owkin

    Nature Medicine publishes breakthrough Owkin research on the first ever use of federated learning to train deep learning models on multiple hospitals’ histopathology data

    63 shares
    Share 25 Tweet 16
  • First made-in-Singapore antibody-drug conjugate (ADC) approved to enter clinical trials

    57 shares
    Share 23 Tweet 14
  • Metal-free batteries raise hope for more sustainable and economical grids

    41 shares
    Share 16 Tweet 10
  • One-pot reaction creates versatile building block for bioactive molecules

    37 shares
    Share 15 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Motile sperm and frequent abortions in spreading earthmoss

One of the causes of aggressive liver cancer discovered: a ‘molecular staple’ that helps repair broken DNA

KIMM develops the world’s first electrode design for lithium-ion battery that improves smartphone·laptop battery performance

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 42 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In