• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, August 2, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

‘Slow slip’ earthquakes’ hidden mechanics revealed

Bioengineer by Bioengineer
May 25, 2021
in Chemistry
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: UT Jackson School of Geosciences/UTIG

Slow slip earthquakes, a type of slow motion tremor, have been detected at many of the world’s earthquake hotspots, including those found around the Pacific Ring of Fire, but it is unclear how they are connected to the damaging quakes that occur there. Scientists at The University of Texas at Austin have now revealed the earthquakes’ inner workings using seismic CT scans and supercomputers to examine a region off the coast of New Zealand known to produce them.

The insights will help scientists pinpoint why tectonic energy at subduction zones such as New Zealand’s Hikurangi subduction zone, a seismically active region where the Pacific tectonic plate dives — or subducts — beneath the country’s North Island, is sometimes released gently as slow slip, and other times as devastating, high-magnitude earthquakes.

The research was recently published in the journal Nature Geoscience as part of a special edition focused on subduction zones.

“Subduction zones are the biggest earthquake and tsunami factories on the planet,” said co-author Laura Wallace, a research scientist at UT Austin’s Institute for Geophysics (UTIG) and GNS Science in New Zealand. “With more research like this, we can really begin to understand the origin of different types of [earthquake] behavior at subduction zones.”

The research used novel image processing techniques and computer modelling to test several proposed mechanisms about how slow slip earthquakes unfold, revealing the ones that worked best.

The study’s lead author, Adrien Arnulf, a UTIG research scientist, said that this line of research is important because understanding where and when a large subduction zone earthquake could strike can happen only by first solving the mystery of slow slip.

“If you ignore slow slip, you will miscalculate how much energy is stored and released as tectonic plates move around the planet,” he said.

Scientists know that slow slip events are an important part of the earthquake cycle because they occur in similar places and can release as much pent-up tectonic energy as a high magnitude earthquake, but without causing sudden seismic shaking. In fact, the events are so slow, unfolding over the course of weeks, that they escaped detection until only about 20 years ago.

New Zealand’s Hikurangi subduction zone is an ideal site to study slow slip quakes because they occur at depths shallow enough to be imaged at high resolution, either by listening to the internal rumblings of the Earth, or by sending artificial seismic waves into the subsurface and recording the echo.

Turning seismic data into a detailed image is a laborious task but by using similar techniques to those used in medical imaging, geoscientists are able to pick apart the length, shape, and strength of the seismic echo to figure out what’s going on underground.

In the current study, Arnulf was able to extract even more information by programming algorithms on Lonestar5, a supercomputer at the Texas Advanced Computing Center, to look for patterns in the data. The results told Arnulf how weak the fault had become and where pressure was being felt within the Earth’s joints.

He worked with UT Jackson School of Geosciences graduate student, James Biemiller, who used Arnulf’s parameters in a detailed simulation he had developed for modeling how faults move.

The simulation showed tectonic forces building in the crust then releasing through a series of slow motion tremors, just like slow slip earthquakes detected at Hikurangi over the past two decades.

According to the scientists, the real success of the research was not that the model worked but that it showed them where the gaps are in the physics.

“We don’t necessarily have the nail-in-the-coffin of how exactly shallow slow slip occurs,” said Biemiller, “but we tested one of the standard nails (rate-state friction) and found it doesn’t work as well as you’d expect. That means we can probably assume there are other processes involved in modulating slow slip, like cycles of fluid pressurization and release.”

Finding those other processes is exactly what the team hope their method will help facilitate.

The study’s seismic data was provided by GNS Science and the New Zealand Ministry of Economic Development. The research was funded by UTIG and an MBIE Endeavour fund for GNS Science. UTIG is a unit of the Jackson School of Geosciences.

###

Media Contact
Constantino Panagopulos
[email protected]

Original Source

https://www.jsg.utexas.edu/news/2021/05/slow-slip-earthquakes-hidden-mechanics-revealed/

Related Journal Article

http://dx.doi.org/10.1038/s41561-021-00741-0

Tags: Earth ScienceGeophysics/GravityPlate Tectonics
Share12Tweet8Share2ShareShareShare2

Related Posts

Innovative Acid-Base Bifunctional Catalyst Enhances Production of Essential Lithium-Ion Battery Material

Innovative Acid-Base Bifunctional Catalyst Enhances Production of Essential Lithium-Ion Battery Material

August 1, 2025
Oven-Temperature Treatment (~300℃) Enhances Catalyst Performance by Six Times

Oven-Temperature Treatment (~300℃) Enhances Catalyst Performance by Six Times

August 1, 2025

5 Innovations Securing Water Sources and Ensuring Availability

August 1, 2025

Innovative Imaging Technique Reveals Elemental Distributions in Frozen Solvents within Nanomaterials

August 1, 2025
Please login to join discussion

POPULAR NEWS

  • Blind to the Burn

    Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    60 shares
    Share 24 Tweet 15
  • Dr. Miriam Merad Honored with French Knighthood for Groundbreaking Contributions to Science and Medicine

    46 shares
    Share 18 Tweet 12
  • Study Reveals Beta-HPV Directly Causes Skin Cancer in Immunocompromised Individuals

    38 shares
    Share 15 Tweet 10
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    36 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

CK2–PRC2 Signal Drives Plant Cold Memory Epigenetics

Personalized ML Wearable Enhances Impaired Arm Function

Cancer Cells Trigger Protumor Macrophages via oxLDL

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.