• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, August 17, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Slipping a note to a neighbor: The cellular way

by
June 26, 2024
in Biology
Reading Time: 4 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Researchers have gained new knowledge of how drugs bind to connexin molecules. These molecules form channels that allow neighbouring cells to send direct messages to one another. Dysfunctions of these channels are involved in neurological and cardiac diseases. The new understanding of how drugs bind and act on them should help develop therapies to treat such conditions.

Gap junction channel intercellular communication

Credit: Laura Canil

Researchers have gained new knowledge of how drugs bind to connexin molecules. These molecules form channels that allow neighbouring cells to send direct messages to one another. Dysfunctions of these channels are involved in neurological and cardiac diseases. The new understanding of how drugs bind and act on them should help develop therapies to treat such conditions.

Today we use many electronic means to communicate, but sometimes dropping a note in a neighbour’s letter box or leaving a cake on a doorstep is most effective. Cells too have ways to send direct messages to their neighbours.

Adjacent cells can communicate directly through relatively large channels called gap junctions, which allow cells to freely exchange small molecules and ions with each other or with the outside environment. In this way, they can coordinate activities in the tissues or organs that they compose and maintain homeostasis.

Such channels are created from proteins known as connexins. Six connexins situated in the cell membrane create a hemichannel; this hemichannel joins with a hemichannel in a neighbouring cell to create a two-way channel.

When connexin channels do not work properly, they cause changes in intercellular communication that have been linked to many different diseases. These include cardiac arrhythmias, diseases of the central nervous system such as epilepsy, neurodegenerative diseases and cancer.

As a result, the search is on for drugs that target connexins. Yet, understanding of the structure of connexins and how drugs bind to connexin channels to block or activate them is limited. Indeed, of the twenty-one types of connexins known to exist in humans, few of them are currently evaluated as drug targets.

An explanation for antimalarial side-effects?

Now, researchers from PSI, ETH Zurich and the University of Geneva have deepened our understanding of connexin channels and how they bind to drug molecules. The study is published in the journal Cell Discovery.

The connexin they studied is known as connexin-36, or Cx36 for short. Cx36 plays important roles in the pancreas and the brain, respectively controlling insulin secretion and neuronal activity. Heightened levels of Cx36 channels have been found in patients suffering epilepsy following traumatic brain injury. Here, it is thought that the increased activity of the gap junction channels cause neurons to die. Therefore, the team were interested in drugs that inhibit the channels.

The team studied Cx36 bound to the antimalarial drug mefloquine (brand name Lariam). The drug is known to act on the parasites that cause malaria when they enter the blood stream from infected mosquitos. However, research has indicated that the mefloquine also binds to Cx36 in our cells, potentially explaining some of the well-known severe neuropsychiatric side effects of the drug.

Using cryo-electron microscopy, the research team captured high-resolution structures of Cx36 gap junction channels with and without the presence of mefloquine. They saw how the drug molecule binds to each of the six connexins composing the channel. The binding site is buried within the pore of the channel, and so, when six molecules bind, they effectively close the channel.

Computer simulations by collaborators at the University of Geneva helped the team understand the effect that mefloquine binding would have on the ability of the channel to permit ions to through. In this way, they showed that binding of the drug restricts the flow of solutes through the channel.

A starting point for structure-based drug discovery in connexins

The researchers hope that this new structural knowledge will be a starting point for developing new drugs with greater specificity for particular connexin channels.

“Our study shows how a drug molecule lands in the pore of the channel and, through our simulations, gives a plausible explanation for how the drug inhibits the channel,” says Volodymyr Korkhov, group leader at PSI and associate professor at the ETH Zurich, who led the study. “This is relevant not only to Cx36, but to the wider question of connexin – drug interactions.”

The latest findings complement other research activities into connexins from the PSI/ETHZ group: notably, the structure of connexin 43 in the closed conformation and how structure and function are linked in connexin 32, which plays a role in the peripheral nervous system.

Text: Paul Scherrer Institute PSI/Miriam Arrell



Journal

Cell Discovery

DOI

10.1038/s41421-024-00691-y

Method of Research

Experimental study

Subject of Research

Cells

Article Title

Structural basis of connexin-36 gap junction channel inhibition.

Article Publication Date

18-Jun-2024

Share12Tweet7Share2ShareShareShare1

Related Posts

Unveiling Ancient Insights Behind Modern Cytoskeleton Evolution

Unveiling Ancient Insights Behind Modern Cytoskeleton Evolution

August 15, 2025
blank

Researchers Identify Molecular “Switch” Driving Chemoresistance in Blood Cancer

August 15, 2025

First Real-Time Recording of Human Embryo Implantation Achieved

August 15, 2025

Ecophysiology and Spread of Freshwater SAR11-IIIb

August 15, 2025

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    140 shares
    Share 56 Tweet 35
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    79 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    59 shares
    Share 24 Tweet 15
  • Predicting Colorectal Cancer Using Lifestyle Factors

    47 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Mpox Virus Impact in SIVmac239-Infected Macaques

Epigenetic Mechanisms Shaping Thyroid Cancer Therapy

Seismic Analysis of Masonry Facades via Imaging

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.