• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, December 29, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

SLAS Discovery releases first issue of 2020

Bioengineer by Bioengineer
December 20, 2019
in Chemistry
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Featured article, ‘The National Cancer Institute’s Plated Compound Sets Can Be a Valuable Resource for Academic Researchers,’ now available

IMAGE

Credit: David James Group


Oak Brook, IL – January’s edition of SLAS Discovery features an analysis of two plated sets of synthetic compounds available from the National Cancer Institute (NCI), and the author’s positive and negative results of using this type of collection in his lab’s research.

Adam Zweifach, Ph.D., (The University of Connecticut) points out that NCI’s compound collections are a valuable resource for academic scientists interested in assay development and drug discovery. The benefits, he concludes, are that the compounds provided were at a convenient size to screen manually; available at minimal (if any) cost; their property and activity data is readily available online, and acquiring a re-supply is easy and convenient.

However, he also noted that the collections did have a significant drawback: they can contain a large number of compounds that are pan assay interfering and nonspecific (PAINS), or contain other chemical liabilities revealed by tools like the rapid elimination of swill (REOS) software filters. This means that screening them is likely to generate hits in many assays; this is good, because it allows researchers to validate their assays and post-screening workflows, but also bad because the hits are unlikely to be attractive leads.

To solve this problem, Zweifach suggests that the NCI create a collection of 10,000 carefully selected lead-like compounds pooled into 1000 wells, which may help with the generation of more attractive hits in most assays. He believes that creating this kind of collection would exponentially help advance academic drug discovery efforts and efficiency.

Zweifach received his doctorate in physiology from Yale University and completed his postdoctoral fellowship at Stanford University. He then established his own lab in the Department of Physiology and Biophysics at the University of Colorado Health Sciences Center before moving to the Department of Molecular and Cell Biology at the University of Connecticut. Here, he became interested in phenotypic screening and has since focused on using high-throughput flow cytometry to discover immunologically active small molecules and on developing ways to use intramolecular FRET sensors based on fluorescent protein pairs for screening.

###

Access to January’s SLAS Discovery issue is available at https://journals.sagepub.com/doi/full/10.1177/2472555219873557 through January 20. For more information about SLAS and its journals, visit http://www.slas.org/journals.

SLAS (Society for Laboratory Automation and Screening) is an international community of 16,000 professionals and students dedicated to life sciences discovery and technology. The SLAS mission is to bring together researchers in academia, industry and government to advance life sciences discovery and technology via education, knowledge exchange and global community building.

SLAS Discovery: Advancing the Science of Drug Discovery, 2018 Impact Factor 2.192. Editor-in-Chief Robert M. Campbell, Ph.D., Eli Lilly and Company, Indianapolis, IN (USA).

SLAS Technology: Translating Life Sciences Innovation, 2018 Impact Factor 2.048. Editor-in-Chief Edward Kai-Hua Chow, Ph.D., National University of Singapore (Singapore).

Media Contact
Jill Hronek
[email protected]
630-256-7527

Related Journal Article

http://dx.doi.org/10.1177/2472555219873557

Tags: BiochemistryBiologyBiotechnologycancer
Share12Tweet8Share2ShareShareShare2

Related Posts

Cutting Electrolyte Reduction Boosts High-Energy Battery Performance

Cutting Electrolyte Reduction Boosts High-Energy Battery Performance

December 19, 2025
Microenvironment Shapes Gold-Catalysed CO2 Electroreduction

Microenvironment Shapes Gold-Catalysed CO2 Electroreduction

December 11, 2025

Photoswitchable Olefins Enable Controlled Polymerization

December 11, 2025

Cation Hydration Entropy Controls Chloride Ion Diffusion

December 10, 2025
Please login to join discussion

POPULAR NEWS

  • Robotic Waist Tether for Research Into Metabolic Cost of Walking

    NSF funds machine-learning research at UNO and UNL to study energy requirements of walking in older adults

    71 shares
    Share 28 Tweet 18
  • Exploring Audiology Accessibility in Johannesburg, South Africa

    51 shares
    Share 20 Tweet 13
  • Nurses’ Views on Online Learning: Effects on Performance

    70 shares
    Share 28 Tweet 18
  • SARS-CoV-2 Subvariants Affect Outcomes in Elderly Hip Fractures

    44 shares
    Share 18 Tweet 11

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Mapping Brain Structure in Global Health and Disease

Link Between Antinuclear Antibodies and Ovarian Insufficiency Revealed

Cancer Vaccine Targets Immune Evasion in Nasopharyngeal Carcinoma

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 71 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.