• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, August 7, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Skyrmions like it hot: Spin structures are controllable even at high temperatures

Bioengineer by Bioengineer
February 13, 2020
in Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Investigation of the temperature dependence of the skyrmion Hall effect reveals further insights into possible new data storage devices

IMAGE

Credit: ill./©: Kai Litzius


The joint research project of Johannes Gutenberg University Mainz (JGU) and the Massachusetts Institute of Technology (MIT) that had previously demonstrated the use of new spin structures for future magnetic storage devices has yet achieved another milestone. The international team is working on structures that could serve as magnetic shift registers, so called racetrack memory devices. This type of storage promises low access times, high information density, and low energy consumption. The new insights published in Nature Electronics shed light on the effects of temperature on the dynamics of skyrmions. According to the researchers’ findings, skyrmions move more efficiently at higher temperatures and their trajectories only depend on the speed of the skyrmions. This makes device design significantly easier.

Skyrmions could serve as data bits for racetrack memory devices in the future

The teams at JGU and MIT observed billionfold reproducible motion of skyrmions, a new topologically stabilized spin structure that is a promising candidate to be used as data bits in the racetrack device. The latest experiments were carried out in thin films of magnetic material that stabilize skyrmions at and above room temperature, which is a feature that is required for any application. As it turned out, there currently are limits to the speed of a skyrmion caused by its deformations that will need to be overcome, possibly in antiferromagnetic materials.

“This is a great moment as we have worked for a long time to get this study completed. Now that we know that skyrmions can be moved billionfold and at high temperatures that are typical for the insides of a computer, we can focus on tackling the high-speed regime and get the device from its experimental state to being superior to existing storage technology,” said Dr. Kai Litzius, lead author of the article. Litzius conducted this work at Johannes Gutenberg University Mainz, combined with a research stay at MIT. After finishing his PhD, he moved to the United States to work at MIT as a postdoctoral associate.

Cooperation with leading international partners as the cornerstone of successful research

“I am very happy to see the next step taken for using skyrmions as magnetic bits in novel devices. The international collaboration with leading partner universities is crucial to enable such work and such collaborations, and exchanges of people are a cornerstone of our graduate education programs,” emphasized Professor Mathias Kläui, corresponding author of the paper. “With funding from the German Academic Exchange Service, the Collaborative Research Center CRC/TRR 173 Spin+X, and the Graduate Programs MAINZ – Materials Science in Mainz and MPGC – Max Planck Graduate Center with Johannes Gutenberg University Mainz, we foster these collaborations and exchanges that can be the stepping stone for the next career step.”

###

Funding for the MAINZ Graduate School was approved in the 2007 German Excellence Initiative. In the second round in 2012, MAINZ was awarded further funding for another five years. One of its core research fields was spintronics, a field of research in which collaboration with leading international partners plays an important role. In 2019, the MAINZ Graduate School merged with the Max Planck Graduate Center with Johannes Gutenberg University Mainz (MPGC).

Media Contact
Dr. Mathias Kläui
[email protected]
49-613-139-23633

Original Source

https://www.uni-mainz.de/presse/aktuell/10894_ENG_HTML.php

Related Journal Article

http://dx.doi.org/10.1038/s41928-019-0359-2

Tags: Chemistry/Physics/Materials SciencesComputer ScienceElectrical Engineering/ElectronicsElectromagneticsHardwareNanotechnology/MicromachinesResearch/DevelopmentTechnology/Engineering/Computer ScienceTheory/Design
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Cutting-Edge Discoveries from MD Anderson: Research Highlights of August 7, 2025

August 7, 2025
Smart Deep Learning for Li-Ion Battery Health Prediction

Smart Deep Learning for Li-Ion Battery Health Prediction

August 7, 2025

Reevaluating Bipartite Patella: An Overlooked Ossicle

August 7, 2025

Breakthrough Experiment Opens Door to Secure, High-Speed Communication

August 7, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Neuropsychiatric Risks Linked to COVID-19 Revealed

    76 shares
    Share 30 Tweet 19
  • Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    61 shares
    Share 24 Tweet 15
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    50 shares
    Share 20 Tweet 13
  • Predicting Colorectal Cancer Using Lifestyle Factors

    46 shares
    Share 18 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Cutting-Edge Discoveries from MD Anderson: Research Highlights of August 7, 2025

Smart Deep Learning for Li-Ion Battery Health Prediction

Reevaluating Bipartite Patella: An Overlooked Ossicle

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.