• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Sunday, February 5, 2023
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS

Ordinary Skin Cells Morphed Into Functional Brain Cells

Bioengineer by Bioengineer
August 30, 2013
in NEWS
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
 
This breakthrough now enables “on demand” production of myelinating cells, which provide a vital sheath of insulation that protects neurons and enables the delivery of brain impulses to the rest of the body.
 
In patients with multiple sclerosis (MS), cerebral palsy (CP), and rare genetic disorders called leukodystrophies, myelinating cells are destroyed and cannot be replaced.
 
The new technique involves directly converting fibroblasts—an abundant structural cell present in the skin and most organs—into oligodendrocytes, the type of cell responsible for myelinating the neurons of the brain.
 
“It’s ‘cellular alchemy,’” explained Paul Tesar, assistant professor of genetics and genome sciences at Case Western Reserve School of Medicine and senior author of the study. “We are taking a readily accessible and abundant cell and completely switching its identity to become a highly valuable cell for therapy.”
 
In a process termed “cellular reprogramming,” researchers manipulated the levels of three naturally occurring proteins to induce fibroblast cells to become precursors to oligodendrocytes (called oligodendrocyte progenitor cells, or OPCs).
 
Tesar’s team, led by Case Western Reserve researchers and co-first authors Fadi Najm and Angela Lager, rapidly generated billions of these induced OPCs (called iOPCs). Even more importantly, they showed that iOPCs could regenerate new myelin coatings around nerves after being transplanted to mice—a result that offers hope the technique might be used to treat human myelin disorders.
 
When oligodendrocytes are damaged or become dysfunctional in myelinating diseases, the insulating myelin coating that normally coats nerves is lost. A cure requires the myelin coating to be regenerated by replacement oligodendrocytes.
 
Until now, OPCs and oligodendrocytes could only be obtained from fetal tissue or pluripotent stem cells. These techniques have been valuable, but have had limitations.
 
“The myelin repair field has been hampered by an inability to rapidly generate safe and effective sources of functional oligodendrocytes,” explained co-author and myelin expert Robert Miller, professor of neurosciences at the Case Western Reserve School of Medicine and the university’s vice president for research. “The new technique may overcome all of these issues by providing a rapid and streamlined way to directly generate functional myelin producing cells.”
 
This initial study used mouse cells. The critical next step is to demonstrate feasibility and safety using human cells in a lab setting. If successful, the technique could have widespread therapeutic application to human myelin disorders.
 
“The progression of stem-cell biology is providing opportunities for clinical translation that a decade ago would not have been possible,” said Stanton Gerson, professor of Medicine-Hematology/Oncology at the School of Medicine and director of the National Center for Regenerative Medicine and the UH Case Medical Center Seidman Cancer Center. “It is a real breakthrough.”
 
Additional co-authors of the publication include Case Western Reserve School of Medicine researchers Anita Zaremba, Krysta Wyatt, Andrew Caprariello, Daniel Factor, Robert Karl and Tadao Maeda.

Story Source: 

The above story is reprinted from materials provided by Case Western Reserve University.

Tags: Brain CellsSkin Cells
Share12Tweet8Share2ShareShareShare2

Related Posts

World Cancer Day

Health Equity Report Card pilot project to help close the care gap highlighted on World Cancer Day

February 4, 2023
AC hum noise-based detection using HumTouch.

Tech that turns household surfaces into touch sensors is a touch closer to application

February 4, 2023

Preference for naturally talented over hard workers emerges in childhood, HKUST researchers find

February 4, 2023

Black South Africans report higher life satisfaction and are at less risk for depression post-migration, MU study finds

February 3, 2023
Please login to join discussion

POPULAR NEWS

  • Jean du Terrail, Senior Machine Learning Scientist at Owkin

    Nature Medicine publishes breakthrough Owkin research on the first ever use of federated learning to train deep learning models on multiple hospitals’ histopathology data

    65 shares
    Share 26 Tweet 16
  • First made-in-Singapore antibody-drug conjugate (ADC) approved to enter clinical trials

    58 shares
    Share 23 Tweet 15
  • Metal-free batteries raise hope for more sustainable and economical grids

    41 shares
    Share 16 Tweet 10
  • One-pot reaction creates versatile building block for bioactive molecules

    37 shares
    Share 15 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Health Equity Report Card pilot project to help close the care gap highlighted on World Cancer Day

Tech that turns household surfaces into touch sensors is a touch closer to application

Preference for naturally talented over hard workers emerges in childhood, HKUST researchers find

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 42 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In