• HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Saturday, May 21, 2022
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Skin cells ‘crawl’ together to heal wounds treated with unique hydrogel layer

Bioengineer by Bioengineer
December 14, 2016
in Science News
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Marit Mitchell / U of T Engineering

Time may not heal all wounds, but a proprietary mix of peptides and gel developed by U of T Engineering researchers heals most.

A team led by Professor Milica Radisic has demonstrated for the first time that their peptide-hydrogel biomaterial prompts skin cells to "crawl" toward one another, closing chronic, non-healing wounds often associated with diabetes, such as bed sores and foot ulcers.

The team tested their biomaterial on healthy cells from the surface of human skin, called keratinocytes, as well as on keratinocytes derived from elderly diabetic patients. They saw non-healing wounds close 200 per cent faster than with no treatment, and 60 per cent faster than treatment with a leading commercially used collagen-based product.

"We were happy when we saw the cells crawl together much faster with our biomatieral, but if it didn't work with diabetic cells, that would have been the end of the story," says Radisic. "But even the diabetic cells travelled much faster — that's huge."

Until now, most treatments for chronic wounds involved applying topical ointments that promote the growth of blood vessels to the area. But in diabetic patients, blood vessel growth is inhibited, making those treatments ineffective. Radisic and her team have been working with their special peptide — called QHREDGS, or Q-peptide for short — for almost 10 years. They knew it promoted survival of many different cell types, including stem cells, heart cells and fibroblasts (the cells that make connective tissues), but had never applied it to wound healing.

"We thought that if we were able to use our peptide to both promote survival and give these skin cells a substrate so they could crawl together, they would be able to close the wound more quickly," says Radisic. "That was the underlying hypothesis."

Radisic and PhD students Yun Xiao and Lewis Reis compared the Q-peptide-hydrogel mix to the commercially available collagen dressing, to hydrogels without the peptide, and to no treatment. They found that a single dose of their peptide-hydrogel biomaterial closed the wounds in less than two weeks. Their work was published in the journal Proceedings of the National Academy of Sciences.

"Currently, there are therapies for diabetic foot ulcers, but they can be improved," says Xiao, the paper's lead author. "Diabetic wound healing is a complicated condition, because many aspects of the normal wound healing process are disrupted — I know people with diabetic foot ulcers, and the possibility to improve their lives drove me throughout this work."

The multidisciplinary team worked with Covalon Technologies Ltd., a company dedicated to the research and development and commercialization of novel healthcare technologies, on this project. Covalon's chief scientific officer, Dr. Val DiTizio, has been leading the partnership with Radisic's group for about three years, and contributed its collagen-based wound-healing dressing, ColActive, as one of the controls.

"We believe strongly in keeping abreast of new technologies being developed in academia," says DiTizio, who is also working with Radisic on a bone-regeneration project. "Collaborations such as this one inform our future research directions and help make our products better."

This finding could have big implications for many types of wound treatments, from recovery after a heart attack to healing post-surgery. Accelerated healing times also introduces the added benefit of reducing the opportunity for infection, says Reis.

"One of the biggest challenges with the work was convincing our peers that the results we were getting were indeed true, as they were staggering, even to us," he says. "Being confident in our methods and diligent in our research and analysis prevailed in the end."

###

Media Contact

Marit Mitchell
[email protected]
416-978-4498
@uoftengineering

http://www.engineering.utoronto.ca/home.htm

############

Story Source: Materials provided by Scienmag

Share12Tweet7Share2ShareShareShare1

Related Posts

Graphyne

Long-hypothesized ‘next generation wonder material’ created for first time

May 21, 2022
Flower strips next to a conventional wheat field

Organic farming or flower strips – which is better for bees?

May 21, 2022

Haptics device creates realistic virtual textures

May 20, 2022

Researchers unveil a secret of stronger metals

May 20, 2022
Please login to join discussion

POPULAR NEWS

  • Weybourne Atmospheric Observatory

    Breakthrough in estimating fossil fuel CO2 emissions

    46 shares
    Share 18 Tweet 12
  • Hidden benefit: Facemasks may reduce severity of COVID-19 and pressure on health systems, researchers find

    44 shares
    Share 18 Tweet 11
  • Discovery of the one-way superconductor, thought to be impossible

    43 shares
    Share 17 Tweet 11
  • Sweet discovery could drive down inflammation, cancers and viruses

    43 shares
    Share 17 Tweet 11

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Tags

Violence/CriminalsUniversity of WashingtonVaccineVehiclesWeather/StormsWeaponryVirusUrbanizationVaccinesUrogenital SystemVirologyZoology/Veterinary Science

Recent Posts

  • Long-hypothesized ‘next generation wonder material’ created for first time
  • Organic farming or flower strips – which is better for bees?
  • Haptics device creates realistic virtual textures
  • Researchers unveil a secret of stronger metals
  • Contact Us

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
Posting....