• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Sunday, January 29, 2023
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Sites in the brain where RNA is edited could help to better understand neurodevelopment and disease, researchers have found

Bioengineer by Bioengineer
November 1, 2022
in Biology
Reading Time: 5 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Mount Sinai researchers have catalogued thousands of sites in the brain where RNA is modified throughout the human lifespan in a process known as adenosine-to-inosine (A-to-I) editing, offering important new avenues for understanding the cellular and molecular mechanisms of brain development and how they factor into both health and disease.

A-to-I editing graphic

Credit: Jessica Johnson

Mount Sinai researchers have catalogued thousands of sites in the brain where RNA is modified throughout the human lifespan in a process known as adenosine-to-inosine (A-to-I) editing, offering important new avenues for understanding the cellular and molecular mechanisms of brain development and how they factor into both health and disease.

In a study published in Cell Reports, the team described how the rate of RNA editing in the brain increases as individuals age, with implications for dissecting the pathology of altered A-to-I editing across a range of neurodevelopmental and aging disorders.

“Our work provides more nuanced and accurate insights into the contribution of RNA modifications by A-to-I editing during human brain development,” says senior author Michael Breen, PhD, Assistant Professor of Psychiatry, and Genetics and Genomic Sciences, at the Icahn School of Medicine at Mount Sinai, and a member of the Seaver Center for Autism Research and Treatment. “The field has already identified millions A-to-I sites in the brain, which has made it particularly challenging to determine which of these are likely to be physiologically important. We narrowed this down to about 10,000 sites with potential functional roles from early fetal development through advanced aging. By providing an atlas of these sites, we’ve opened the door to further understand brain neurodevelopment through the lens of A-to-I RNA modifications.”

DNA holds the genetic blueprint for humans and other living creatures, but RNA actually carries out its instructions to create functional proteins. Modifications that accumulate on the RNA can alter the way a protein ultimately functions. A family of ADAR enzymes introduce these individual A-to-I changes. A handful of these edits are known to play essential physiological roles during early fetal development by regulating synaptic transmission and neuronal signaling in the brain. This work shows that across the human lifespan, RNA in the brain accumulates thousands of individual edits, and these changes are likely to have functional consequences as we age.

The Mount Sinai study generated and compiled brain RNA-sequence data across more than 800 individuals. This data covered all stages of prenatal and postnatal development, from the very first embryonic progenitor cells to functionally distinct brain tissue from centenarians. This broad sweep enabled researchers to develop a model depicting for the first time how A-to-I editing evolves over a lifetime, in which unedited RNAs are expressed, and possibly translated into proteins, more predominantly during fetal periods of development, while edited RNA is more abundant in the adult brain.

“This means that during older age there is generally a higher editing rate and frequency of A-to-I editing occurring, including stabilizing RNA structures and modulating the way RNAs interact with microRNAs,” notes Dr. Breen. His research team also learned that a subset of these A-to-I sites introduce new amino-acid substitutions into the protein-coding region of the brain, an event known as RNA recoding. This is a particularly important finding inasmuch as RNA recoding has direct functional and/or structural effects on proteins.

The Mount Sinai team also sought to answer the question of how genetic variability might explain some of the differences in A-to-I editing as individuals age. They learned that because editing sites are strongly regulated during early fetal development, editing levels are measurably different for thousands of sites based on unique genetic variants. This distinction evens out during postnatal development. From a basic science perspective, the dynamically regulated sites uncovered by researchers provide numerous avenues for future work to manipulate basic mechanisms of early brain development through A-to-I editing.

Previous work by Dr. Breen—whose laboratory works at the intersection of functional genomics, computational biology, and neuroscience—found that A-to-I editing is disrupted in brain tissue from individuals with neurodevelopmental disorders.

“This work provides us with immediate avenues for dissecting the pathological implications of altered A-to-I editing across a range of neurodevelopmental and aging disorders,” he says. “It’s more clear now than ever that elucidating the dynamic regulation of RNA editing can offer unique insights into their role in promoting health as well as disease.”

About the Mount Sinai Health System
Mount Sinai Health System is one of the largest academic medical systems in the New York metro area, with more than 43,000 employees working across eight hospitals, over 400 outpatient practices, nearly 300 labs, a school of nursing, and a leading school of medicine and graduate education. Mount Sinai advances health for all people, everywhere, by taking on the most complex health care challenges of our time — discovering and applying new scientific learning and knowledge; developing safer, more effective treatments; educating the next generation of medical leaders and innovators; and supporting local communities by delivering high-quality care to all who need it.

Through the integration of its hospitals, labs, and schools, Mount Sinai offers comprehensive health care solutions from birth through geriatrics, leveraging innovative approaches such as artificial intelligence and informatics while keeping patients’ medical and emotional needs at the center of all treatment. The Health System includes approximately 7,300 primary and specialty care physicians; 13 joint-venture outpatient surgery centers throughout the five boroughs of New York City, Westchester, Long Island, and Florida; and more than 30 affiliated community health centers. We are consistently ranked by U.S. News & World Report‘s Best Hospitals, receiving high “Honor Roll” status, and are highly ranked: No. 1 in Geriatrics and top 20 in Cardiology/Heart Surgery, Diabetes/Endocrinology, Gastroenterology/GI Surgery, Neurology/Neurosurgery, Orthopedics, Pulmonology/Lung Surgery, Rehabilitation, and Urology. New York Eye and Ear Infirmary of Mount Sinai is ranked No. 12 in Ophthalmology. U.S. News & World Report’s “Best Children’s Hospitals” ranks Mount Sinai Kravis Children’s Hospital among the country’s best in several pediatric specialties. The Icahn School of Medicine at Mount Sinai is one of three medical schools that have earned distinction by multiple indicators: It is consistently ranked in the top 20 by U.S. News & World Report‘s “Best Medical Schools,” aligned with a U.S. News & World Report “Honor Roll” Hospital, and top 20 in the nation for National Institutes of Health funding and top 5 in the nation for numerous basic and clinical research areas. Newsweek’s “The World’s Best Smart Hospitals” ranks The Mount Sinai Hospital as No. 1 in New York and in the top five globally, and Mount Sinai Morningside in the top 20 globally.

For more information, visit https://www.mountsinai.org or find Mount Sinai on Facebook, Twitter and YouTube.

###



Journal

Cell Reports

Method of Research

Data/statistical analysis

Subject of Research

People

Article Title

Spatiotemporal and genetic regulation of A-to-I editing throughout human brain development

Article Publication Date

1-Nov-2022

Share12Tweet7Share2ShareShareShare1

Related Posts

A clump of sea campions next to some thrift or sea pinks.

Ancestral variation guides future environmental adaptations

January 27, 2023
Motile Sperm and Frequent Abortions in Spreading Earthmoss

Motile sperm and frequent abortions in spreading earthmoss

January 27, 2023

A transnational collaboration leads to the characterization of an emergent plant virus

January 26, 2023

Study shows that bioprinted artificial skin can be used in cosmetics and drugs testing

January 26, 2023

POPULAR NEWS

  • Jean du Terrail, Senior Machine Learning Scientist at Owkin

    Nature Medicine publishes breakthrough Owkin research on the first ever use of federated learning to train deep learning models on multiple hospitals’ histopathology data

    64 shares
    Share 26 Tweet 16
  • First made-in-Singapore antibody-drug conjugate (ADC) approved to enter clinical trials

    58 shares
    Share 23 Tweet 15
  • Metal-free batteries raise hope for more sustainable and economical grids

    41 shares
    Share 16 Tweet 10
  • One-pot reaction creates versatile building block for bioactive molecules

    37 shares
    Share 15 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

World-first guidelines created to help prevent heart complications in children during cancer treatment

Simulations reproduce complex fluctuations in soft X-ray signal detected by satellites

Measles virus ‘cooperates’ with itself to cause fatal encephalitis

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 42 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In