• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Monday, June 5, 2023
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Single-atom vibrational spectroscopy now sensitive at level of chemical bonds

Bioengineer by Bioengineer
March 21, 2023
in Chemistry
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Researchers led by Prof. ZHOU Wu from the University of Chinese Academy of Sciences (UCAS) and Prof. Sokrates T. Pantelides of Vanderbilt University have pushed the sensitivity of single-atom vibrational spectroscopy to the chemical-bonding-configuration extreme, which is critical for understanding the correlation of lattice vibrational properties with local atomic configurations in materials. 

Vibrational spectroscopy of substitutional Si impurities in graphene with different bonding configurations.

Credit: UCAS

Researchers led by Prof. ZHOU Wu from the University of Chinese Academy of Sciences (UCAS) and Prof. Sokrates T. Pantelides of Vanderbilt University have pushed the sensitivity of single-atom vibrational spectroscopy to the chemical-bonding-configuration extreme, which is critical for understanding the correlation of lattice vibrational properties with local atomic configurations in materials. 

Using a combination of experimental and theoretical approaches, the researchers demonstrated the effect of chemical-bonding configurations and the atomic mass of impurity atoms on local vibrational properties at the single-atom level. 

The study was published in Nature Materials. 

In this study, the researchers investigated the atomic vibrations of two types of silicon (Si) point defects in monolayer graphene: the Si-C3 defect, which arises from the substitution of one carbon (C) atom by a Si atom and forms an atomic defect with three bonds with nearest-neighboring C atoms; and the Si-C4 defect, which forms when two C atoms are substituted by one Si atom and results in a defect with four bonds. 

The Si-C4 defect produced stronger vibrational signals than the Si-C3 defect in the energy-loss region around 100 meV, suggesting unique vibrational modes for the two defect configurations of the same impurity, according to the researchers. 

To examine the extended effect of the two defects, the researchers performed an atom-by-atom analysis focusing on the carbon atoms surrounding the impurities and found that the defects only have a pronounced effect on the nearest neighboring carbon atoms. The next closest neighboring carbon atoms behave almost like typical carbon atoms in graphene. 

Remarkably, the researchers found different frequency shifts of the low-energy phonon peak for the nearest neighboring carbon atoms in these two types of Si point defects with different bonding configurations. Complementing this discovery with density-functional-theory calculations, the researchers showed that the different vibrational signals of Si and the nearest neighboring C atoms result from the unique vibrational modes of the two defects, which are primarily dominated by local configurational symmetry. 

They also studied another defect with a much lower mass—nitrogen (N) in the form of N-C3. In contrast to Si-C3, the vibrational variation is mainly reflected in the high-frequency peak, which accounts for most of the optical phonon modes. The nearest neighbor extension persists. 

This experimental progress was made possible by considerable efforts by the UCAS team to improve the stability of their monochromated scanning transmission electron microscope (STEM) and the sensitivity of the monochromated electron energy-loss spectroscopy (EELS) measurement. 

This work has pushed the sensitivity of single-atom vibrational spectroscopy in STEM to the level of chemical bonds and made precise measurements of the vibrational properties of point defects in graphene, providing insights into the defect-induced physics in two-dimensional materials. 

This work was supported by the National Key R&D Program of China, the Beijing Outstanding Young Scientists Program, and the National Natural Science Foundation of China. 



Journal

Nature Materials

DOI

10.1038/s41563-023-01500-9

Method of Research

Experimental study

Subject of Research

Not applicable

Article Title

Single-atom vibrational spectroscopy with chemical-bonding sensitivity

Article Publication Date

16-Mar-2023

Share12Tweet7Share2ShareShareShare1

Related Posts

Racial and ethnic diversity in research

Scientific publishers and funding agencies unite in favor of racial and ethnic diversity in research

June 2, 2023
STAR Time Projection CHamber

Subtle signs of fluctuations in critical point search

June 2, 2023

UVA-led discovery challenges 30-year-old dogma in associative polymers research

June 2, 2023

Cancer cells rev up synthesis, compared with neighbors

June 1, 2023

POPULAR NEWS

  • plants

    Plants remove cancer causing toxins from air

    40 shares
    Share 16 Tweet 10
  • Element creation in the lab deepens understanding of surface explosions on neutron stars

    36 shares
    Share 14 Tweet 9
  • Deep sea surveys detect over five thousand new species in future mining hotspot

    35 shares
    Share 14 Tweet 9
  • How life and geology worked together to forge Earth’s nutrient rich crust

    35 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Phase 3 SWOG Cancer Research Network trial, led by a City of Hope researcher, demonstrates one-year progression-free survival in 94% of patients with Stage 3 or 4 classic Hodgkin lymphoma who received a checkpoint inhibitor combined with chemotherapy

The promise of novel FolRα-targeting antibody drug conjugate in recurrent epithelial ovarian cancer

Carbon-based stimuli-responsive nanomaterials: classification and application

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 50 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In