• HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Saturday, April 17, 2021
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Simultaneous measurement of biophysical properties and position of single cells in a microdevice

Bioengineer by Bioengineer
November 19, 2019
in Chemistry
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: SUTD

Tracking the lateral position of single cells and particles plays an important role in evaluating the efficiency of microfluidic cell focusing, separation and sorting. Traditionally, the performance of microfluidic cell separation and sorting is evaluated either by analyzing the input and collected output samples requiring extra multiple steps of off-chip analysis or the use of expensive equipment (e.g., flow cytometry), or by detecting the lateral positions of cells using an expensive high-speed imaging setup with intricate image processing algorithms or laborious manual analysis. Hence, there is a great need to develop a simple approach for the lateral position measurement of flowing particles.

In this study, a Singapore University of Technology and Design (SUTD) research team led by Associate Professor Dr Ye Ai’s developed a microfluidic impedance flow cytometry device for the lateral position measurement of single cells and particles with a novel N-shaped electrode design.

A differential current collected from N-shaped electrodes encodes the trajectory of flowing single particles. A simple analytical expression is derived for the measurement of the particle lateral position based on the relationship between the generating electrical current and the positions of the flowing particles, electrodes and microchannel, eliminating the usage of expensive high-speed camera and computationally intensive image processing or laborious manual analysis.

Principal investigator, Dr. Ai said: “Compared to previously reported impedance-based microfluidic devices for measuring the particle lateral position, we have achieved the highest measurement resolution, highest flow rate and smallest measured particle size (3.6 μm beads). On top of that, this method is more straightforward as the particle lateral position can be calculated directly from a simple analytical expression rather than using indexes, such as transit time and height of the signal peak or using linear mapping with calibration coefficients to transform the index (i.e., the relative difference of the signal peak magnitude) to the electrical estimates of the lateral position.”

###

This work has been published and was also featured on the cover of 7 November 2019 issue of Lab on a Chip, a top-tier journal focused on research in innovative devices and applications at the micro- and nanoscale. SUTD graduate student, Dahou Yang participated in this research project. This work was supported by the Singapore Ministry of Education.

Media Contact
Melissa Koh
[email protected]
65-649-98742

Related Journal Article

http://dx.doi.org/10.1039/C9LC00819E

Tags: Nanotechnology/MicromachinesTechnology/Engineering/Computer Science
Share12Tweet8Share2ShareShareShare2

Related Posts

IMAGE

The fate of the planet

April 16, 2021
IMAGE

The future of particle accelerators is here

April 16, 2021

Scientists may detect signs of extraterrestrial life in the next 5 to 10 years

April 16, 2021

On the pulse of pulsars and polar light

April 16, 2021

Leave a Reply Cancel reply

Your email address will not be published.

This site uses Akismet to reduce spam. Learn how your comment data is processed.

POPULAR NEWS

  • IMAGE

    Jonathan Wall receives $1.79 million to develop new amyloidosis treatment

    60 shares
    Share 24 Tweet 15
  • Terahertz accelerates beyond 5G towards 6G

    852 shares
    Share 341 Tweet 213
  • A sturdier spike protein explains the faster spread of coronavirus variants

    44 shares
    Share 18 Tweet 11
  • UofL, Medtronic to develop epidural stimulation algorithms for spinal cord injury

    56 shares
    Share 22 Tweet 14

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Tags

University of WashingtonVaccineWeather/StormsVirusVirologyWeaponryVaccinesUrbanizationVehiclesUrogenital SystemZoology/Veterinary ScienceViolence/Criminals

Recent Posts

  • New amphibious centipede species discovered in Okinawa and Taiwan
  • USU researchers develop power converter for long-distance, underwater electric grids
  • The fate of the planet
  • The future of particle accelerators is here
  • Contact Us

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In