• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, November 5, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Simulation method helps combat climate change, boost energy supply

Bioengineer by Bioengineer
December 16, 2016
in Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Water Resources Research

Fukuoka, Japan – A potential solution for addressing climate change is to securely store carbon dioxide underground in reservoirs from which oil was previously extracted, an approach known as carbon sequestration. This is expensive, but the costs can be reduced by extracting any remaining oil from these reservoirs at the same time as introducing the carbon dioxide. However, it has been difficult to determine the most appropriate sites in terms of retaining the carbon dioxide for a long time as well as maximizing the recovery of oil.

Research from the International Institute for Carbon Neutral Energy Research (I2CNER) at Japan's Kyushu University has now developed a method of simulating a high-pressure mixture of oil, carbon dioxide, and water underground and the extent that it permeates rock, based on images of the rock structure taken at the microscopic level. This approach should help in identifying appropriate sites for applying this technology, thereby increasing the amount of carbon dioxide that can be sequestered and helping impede climate change.

For carbon sequestration at sites of spent oil reservoirs, carbon dioxide is injected at such a high pressure that it adopts a fluid-like form called supercritical fluid. There are thus three "fluids": carbon dioxide, water, and oil, at these underground sites, so it is difficult to model their complex behavior. In their study, the researchers used a model called the three-phase lattice-Boltzmann model to predict what will happen to these liquids during carbon sequestration, considering factors such as the size and shapes of empty "pores" within the rock and the levels of saturation of these fluids in the rock. This approach further provides the three-phase relative permeability of natural rocks, although laboratory measurements of this are extremely complicated, costly, and time-consuming.

"In carbon sequestration, we can redirect carbon dioxide from sites of major production such as power plants to underground reservoirs, where it should remain for thousands of years," study coauthor Takeshi Tsuji says. "Our method can tell us which storage sites would be best for this. It does this by revealing how much carbon dioxide and oil will pass through the rock at a particular site."

Tsuji and author Fei Jiang confirmed the accuracy of this method by testing it with a 3D image of the microstructure of sandstone. The simulation involved setting initial conditions with oil and water present at different levels in the rock, followed by the injection of carbon dioxide at high pressure, after which the changes in the distributions of these three components were predicted. Previous studies were unable to perform such three-phase fluid flow simulation in 3D natural sandstone; therefore this successful simulation in natural rock is an exciting achievement.

"The accuracy of the results of our method is very important," Jiang says. "If carbon sequestration practitioners make wrong calculations and choose inappropriate sites, carbon dioxide cannot pass through the rock, and fractures could appear in the rock after the high-pressure injection, which might lead to dangerous emissions at the surface or trigger earthquakes."

By improving the efficiency of oil extraction and thus increasing the profitability of this form of carbon sequestration, this method should enable this form of carbon capture to be performed more widely.

The article "Estimation of three-phase relative permeability by simulating fluid dynamics directly on rock-microstructure images" was published in Water Resources Research at DOI: 10.1002/2016WR019098.

###

Media Contact

Sayaka Ao
[email protected]

HOME

############

Story Source: Materials provided by Scienmag

Share12Tweet7Share2ShareShareShare1

Related Posts

Exploring Career Journeys of Male Nurse Managers

November 5, 2025

Higher Internalizing Disorder Risk in Norwegian Student Gamers

November 5, 2025

Insulin Resistance Biomarkers Predict Colorectal Cancer Outcomes

November 5, 2025

Clustering Boosts Cage Tilapia Value Chain in Kenya

November 5, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1298 shares
    Share 518 Tweet 324
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    313 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    205 shares
    Share 82 Tweet 51
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    138 shares
    Share 55 Tweet 35

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Exploring Career Journeys of Male Nurse Managers

Higher Internalizing Disorder Risk in Norwegian Student Gamers

Insulin Resistance Biomarkers Predict Colorectal Cancer Outcomes

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.