• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, November 21, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Simplified method makes cell-free protein synthesis more flexible and accessible

Bioengineer by Bioengineer
February 25, 2019
in Biology
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Nicole E. Gregorio/ Cal Poly San Luis Obispo

Researchers have radically simplified the method for cell-free protein synthesis (CFPS), a technique that could become fundamental to medical research.

Synthesizing proteins is essential for multiple types of pharmaceutical and genetic research. For years, proteins could only be synthesized within live cells. CFPS provides the novel ability to biosynthesize proteins in a test tube in a matter of hours without the need for living cells. This process provides a new level of control over protein production, an incredible boon for researchers pursuing high-throughput testing, biosensor construction, metabolic engineering and more.

“This biotechnology harnesses the genetic code in a test tube, providing direct access to biological machinery that is traditionally locked inside the cell,” said Javin Oza, a biochemistry professor at Cal Poly, San Luis Obispo. “This allows scientists and engineers to make vaccines and therapeutic proteins, and perform diagnostic tests on-demand in the lab or out in the field. In the classroom, CFPS allows students to learn about the genetic code in an inquiry-based manner.”

While the acceptance of CFPS as a promising technology has grown substantially in the past two decades, it still suffers from some limitations due to the difficulty and expense of implementing the technique.

As reported in the Journal of Visualized Experimentation, a group of researchers at Cal Poly led by Oza and collaborator Katharine Watts have developed a method to make CFPS widely accessible. The main advantages of the new technique are speed, cost-effectiveness and a much less complex reaction setup compared to other CFPS systems. To further reduce the barriers for scientists to adopt this method, the publication includes a video guide for implementing the new procedure.

“This protocol simplifies and clarifies the methods for implementing cell-free protein synthesis by non-experts,” Oza said. “Improved access to these methods will help democratize the platform and its broad set of applications.”

The new technique requires only basic laboratory training for new users to implement CFPS in their labs, from cell-growth and extract preparation to the in vitro protein synthesis reactions themselves. Researchers developed reagent premixes that greatly reduce the likelihood of error during setup and increase the probability of a successful reaction. These chemical and biological reagents are stable and can withstand multiple freeze-thaw cycles. In the paper, researchers also identify and report the variables that significantly impact the successful implementation of CFPS and the variables that new users should optimize for successful reactions.

The simplified procedure is functionally comparable to the more technical methods used previously and can be used to screen protein products more rapidly, greatly increasing the number of tests that can be run in a given time period. This capacity supports sophisticated research efforts, such as functional genomics and metabolic engineering.

“In our collaboration, we are employing the simplified CFPS method to synthesize and engineer complex mega-enzymes, which are traditionally difficult to express,” said Watts, also a Cal Poly biochemistry professor. “The use of CFPS allows for much more rapid design-build-test cycles for engineering these mega-enzymes.”

In addition to primary research, the new CFPS method can be utilized as an educational tool in high school and undergraduate classrooms. When packaged for educational use, it provides students the opportunity to engage with genetics in a hands-on learning environment.

###

This research was supported by the National Science Foundation.

Reference: Levine, M.Z., Gregorio, N.E., Jewett, M.C., Watts, K.R., Oza, J.P. Escherichia Coli-Based Cell-Free Protein Synthesis: Protocols for a robust, flexible, and accessible platform technology. J. Vis. Exp. e58882, doi:10.3791/58882 (2019).

Cal Poly’s College of Science and Mathematics provides a lab-intensive education within a supportive atmosphere. Undergraduate research is central to the college’s Learn by Doing approach, giving students the opportunity to work closely with faculty mentors on real-world research projects. The college houses the undergraduate and post-baccalaureate teacher education programs, providing the state’s future teachers with a strong background in science, engineering, technology and math (STEM). It is one of six academic colleges at Cal Poly, a nationally ranked, four-year comprehensive polytechnic university located in San Luis Obispo, California.

Media Contact
Javin Oza
[email protected]

Original Source

https://www.jove.com/video/58882/escherichia-coli-based-cell-free-protein-synthesis-protocols-for

Related Journal Article

http://dx.doi.org/10.3791/58882

Tags: BiochemistryBiotechnologyChemistry/Physics/Materials SciencesScience/Math
Share12Tweet8Share2ShareShareShare2

Related Posts

Whole-Genome Resequencing Uncovers Adaptation in Extreme Sheep

Whole-Genome Resequencing Uncovers Adaptation in Extreme Sheep

November 20, 2025
Genotyping Enterocytozoon bieneusi in Preweaned Calves

Genotyping Enterocytozoon bieneusi in Preweaned Calves

November 20, 2025

Ovarian Hydatidosis: Diagnostic and Management Challenges

November 20, 2025

Morphology and Protein Analysis of Clinostomum in Channa

November 20, 2025
Please login to join discussion

POPULAR NEWS

  • New Research Unveils the Pathway for CEOs to Achieve Social Media Stardom

    New Research Unveils the Pathway for CEOs to Achieve Social Media Stardom

    202 shares
    Share 81 Tweet 51
  • Scientists Uncover Chameleon’s Telephone-Cord-Like Optic Nerves, A Feature Missed by Aristotle and Newton

    119 shares
    Share 48 Tweet 30
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    211 shares
    Share 84 Tweet 53
  • Neurological Impacts of COVID and MIS-C in Children

    91 shares
    Share 36 Tweet 23

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Enhancing Snow Depth Estimation with Data Fusion Techniques

Exploring the Diverse Functions of Biomolecular Condensates

Transforming Saline Wastelands: The Power of Inland Aquaculture

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 69 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.