• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Friday, June 9, 2023
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Artificial Intelligence

Simplicity is key to co-operative robots

Bioengineer by Bioengineer
April 22, 2014
in Artificial Intelligence
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

A way of making hundreds – or even thousands – of tiny robots cluster to carry out tasks without using any memory or processing power has been developed by engineers at the University of Sheffield, UK.

puck robots

The puck robots used in the research. Photo Credit: University of Sheffield,UK

The team, working in the Sheffield Centre for Robotics (SCentRo), in the University’s Faculty of Engineering, has programmed extremely simple robots that are able to form a dense cluster without the need for complex computation, in a similar way to how a swarm of bees or a flock of birds is able to carry out tasks collectively.

The work, published today [Thursday 17 April 2014] in the International Journal of Robotics Research, paves the way for robot ‘swarms’ to be used in, for example, the agricultural industry where precision farming methods could benefit from the use of large numbers of very simple and cheap robots.

A group of 40 robots has been programmed to perform the clustering task and the researchers have shown, using computer simulations, that this could be expanded to include thousands of robots.

Each robot uses just one sensor that tells them whether or not they can ‘see’ another robot in front of them. Based on whether or not they can see another robot, they will either rotate on the spot, or move around in a circle until they can see one.

In this way they are able to gradually form and maintain a cluster formation. The system’s ingenuity lies in its simplicity. The robots have no memory, do not need to perform any calculations and require only very little information about the environment.

Until now robotic swarms have required complex programming, which means it would be extremely difficult to miniaturise the individual robots.

With the programming developed by the Sheffield team, however, it could be possible to develop extremely small – even nanoscale – machines.

The Sheffield system also shows that even if the information perceived by the robots gets partially corrupted, the majority of them will still be able to work together to complete the task.

Roderich Gross, of SCentRo, explains: “What we have shown is that robots do not need to compute to solve problems like that of gathering into a single cluster, and the same could be true for swarming behaviours that we find in nature, such as in bacteria, fish, or mammals.”

“This means we are able to ‘scale up’ these swarms, to use thousands of robots that could then be programmed to perform tasks. In a real world scenario, this could involve monitoring the levels of pollution in the environment; we could also see them being used to perform tasks in areas where it would be hazardous for humans to go. Because they are so simple, we could also imagine these robots being used at the micron-scale, for example in healthcare technologies, where they could travel through the human vascular network to offer diagnosis or treatment in a non-invasive way.”

The researchers are now focusing on programming the robots to accomplish simple tasks by interacting with other objects, for example by moving them around or by sorting them into groups.

Story Source:

The above story is based on materials provided by University of Sheffield, Abigail Chard.

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Artificial intelligence could help farmers diagnose crop diseases

October 5, 2016
blank

Rats have greater episodic memory than previously thought

October 3, 2016

An algorithm for taxi sharing

September 26, 2016

Artificial intelligence reveals mechanism behind brain tumor

September 20, 2016
Please login to join discussion

POPULAR NEWS

  • plants

    Plants remove cancer causing toxins from air

    42 shares
    Share 17 Tweet 11
  • Element creation in the lab deepens understanding of surface explosions on neutron stars

    36 shares
    Share 14 Tweet 9
  • Deep sea surveys detect over five thousand new species in future mining hotspot

    35 shares
    Share 14 Tweet 9
  • How life and geology worked together to forge Earth’s nutrient rich crust

    35 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Preparing the stage for 6G: A fast and compact transceiver for Sub-THz frequencies

New method takes the uncertainty out of oxide semiconductor layering

Researchers to explore potential of new treatment against vascular dementia

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 51 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In