• HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Monday, March 1, 2021
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS

A Simpler Path To a Catalyst

Bioengineer by Bioengineer
November 6, 2012
in NEWS
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

It started with an idea of Ive Hermans, Assistant Professor at the Institute of Chemical and Bioengineering: The chemist and his co-workers were looking for a new synthesis procedure for an important catalyst for the chemical industry. To date, the synthesis of the catalyst occurs in a very complex and error-prone procedure. The ETH researchers discovered a far more convenient two-step procedure, which is more suitable for large-scale production.

The catalyst in question is a zeolite, a powdery, porous, particulate material. Like all catalysts also this substance can accelerate a certain reaction and/or steer it towards a desired product. Hermans and his co-workers wanted to develop a catalyst that facilitates oxidation reactions and can thus be used for the preparation of so-called lactones from ketones.

 

«The new method is surprisingly easy»

 

The use of a catalyst for such reactions has many advantages. “The preparation of lactones, for instance, is time-intensive and expensive, as acids are formed as side-products“, says Hermans. By using a tin containing zeolite as a catalyst instead, it becomes possible to use hydrogen peroxide as an oxidation reagent so that water is the only side-product. This method has not been implemented industrially so far, due to the time-consuming synthesis procedure of the special zeolites: the process requires 40 days. In addition, the procedure is difficult to control and can easily fail.

The idea of the ETH researchers: Instead of synthesizing the zeolite in a procedure which takes a great deal of time, out of silicon, aluminum and tin, they used a commercially available zeolite made of silicon and aluminum. Within two steps this material was modified to the desired catalyst. “At first, we removed the aluminum atoms from the raw material in a known procedure without changing the crystalline structure of the zeolite“, says PhD student Sabrina Conrad. “Then we replaced the vacant sites inside the zeolite framework with tin atoms by mixing the pretreated zeolite with a tin compound for 15 minutes.” Experiments have shown that the newly prepared zeolite contains more tin than conventionally prepared catalysts. Due to that, the catalyst is significantly more efficient.

Environmentally friendly preparation procedure

In cooperation with an industrial partner, the ETH researchers want to optimize the preparation procedure for large-scale applications. In the future, the catalyst could be used for the industrial synthesis of starting materials required for important plastics. One example would be the preparation of polylactic acid from renewable resources. Polylactic acid is being used in plastic packing materials or foil. “The demand for plastics made from renewable resources will strongly increase as soon as crude oil – the basis of many plastics – will become more rare and expensive”, explains Hermans. “With our catalyst, it is possible to produce such products on a large scale in a much more environmentally friendly way. “

Literature reference

Hammond C, Conrad S, Hermans I: Simple and Scalable Preparation of Highly Active Lewis Acidic Sn-beta. Angewandte Chemie International Edition, 2012, 51: 1-5. DOI: 10.1002/anie.201206193

By Fabio Bergamin

Contact: ETH Zurich Editorial Office, Fax: +41 44 632 17 16, E-mail: [email protected]

Source: ETH Zürich

 

Share12Tweet7Share2ShareShareShare1

Related Posts

IMAGE

Microplastic sizes in Hudson-Raritan Estuary and coastal ocean revealed

March 1, 2021
IMAGE

Cancer: a new killer lymphocyte enters the ring

March 1, 2021

Single cell sequencing opens new avenues for eradicating leukemia at its source

March 1, 2021

Boston College physicist Brian Zhou receives NSF CAREER Award

March 1, 2021

Leave a Reply Cancel reply

Your email address will not be published.

This site uses Akismet to reduce spam. Learn how your comment data is processed.

POPULAR NEWS

  • IMAGE

    Terahertz accelerates beyond 5G towards 6G

    648 shares
    Share 259 Tweet 162
  • People living with HIV face premature heart disease and barriers to care

    82 shares
    Share 33 Tweet 21
  • Global analysis suggests COVID-19 is seasonal

    38 shares
    Share 15 Tweet 10
  • HIV: an innovative therapeutic breakthrough to optimize the immune system

    35 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Tags

MaterialsBiologyPublic HealthEcology/EnvironmentcancerCell BiologyGeneticsTechnology/Engineering/Computer ScienceMedicine/HealthInfectious/Emerging DiseasesClimate ChangeChemistry/Physics/Materials Sciences

Recent Posts

  • Microplastic sizes in Hudson-Raritan Estuary and coastal ocean revealed
  • Cancer: a new killer lymphocyte enters the ring
  • Single cell sequencing opens new avenues for eradicating leukemia at its source
  • Boston College physicist Brian Zhou receives NSF CAREER Award
  • Contact Us

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

Welcome Back!

Login to your account below

Forgotten Password?

Create New Account!

Fill the forms below to register

All fields are required. Log In

Retrieve your password

Please enter your username or email address to reset your password.

Log In