• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Monday, June 5, 2023
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS

A Simpler Path To a Catalyst

Bioengineer by Bioengineer
November 6, 2012
in NEWS
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

It started with an idea of Ive Hermans, Assistant Professor at the Institute of Chemical and Bioengineering: The chemist and his co-workers were looking for a new synthesis procedure for an important catalyst for the chemical industry. To date, the synthesis of the catalyst occurs in a very complex and error-prone procedure. The ETH researchers discovered a far more convenient two-step procedure, which is more suitable for large-scale production.

The catalyst in question is a zeolite, a powdery, porous, particulate material. Like all catalysts also this substance can accelerate a certain reaction and/or steer it towards a desired product. Hermans and his co-workers wanted to develop a catalyst that facilitates oxidation reactions and can thus be used for the preparation of so-called lactones from ketones.

 

«The new method is surprisingly easy»

 

The use of a catalyst for such reactions has many advantages. “The preparation of lactones, for instance, is time-intensive and expensive, as acids are formed as side-products“, says Hermans. By using a tin containing zeolite as a catalyst instead, it becomes possible to use hydrogen peroxide as an oxidation reagent so that water is the only side-product. This method has not been implemented industrially so far, due to the time-consuming synthesis procedure of the special zeolites: the process requires 40 days. In addition, the procedure is difficult to control and can easily fail.

The idea of the ETH researchers: Instead of synthesizing the zeolite in a procedure which takes a great deal of time, out of silicon, aluminum and tin, they used a commercially available zeolite made of silicon and aluminum. Within two steps this material was modified to the desired catalyst. “At first, we removed the aluminum atoms from the raw material in a known procedure without changing the crystalline structure of the zeolite“, says PhD student Sabrina Conrad. “Then we replaced the vacant sites inside the zeolite framework with tin atoms by mixing the pretreated zeolite with a tin compound for 15 minutes.” Experiments have shown that the newly prepared zeolite contains more tin than conventionally prepared catalysts. Due to that, the catalyst is significantly more efficient.

Environmentally friendly preparation procedure

In cooperation with an industrial partner, the ETH researchers want to optimize the preparation procedure for large-scale applications. In the future, the catalyst could be used for the industrial synthesis of starting materials required for important plastics. One example would be the preparation of polylactic acid from renewable resources. Polylactic acid is being used in plastic packing materials or foil. “The demand for plastics made from renewable resources will strongly increase as soon as crude oil – the basis of many plastics – will become more rare and expensive”, explains Hermans. “With our catalyst, it is possible to produce such products on a large scale in a much more environmentally friendly way. “

Literature reference

Hammond C, Conrad S, Hermans I: Simple and Scalable Preparation of Highly Active Lewis Acidic Sn-beta. Angewandte Chemie International Edition, 2012, 51: 1-5. DOI: 10.1002/anie.201206193

By Fabio Bergamin

Contact: ETH Zurich Editorial Office, Fax: +41 44 632 17 16, E-mail: [email protected]

Source: ETH Zürich

 

Share12Tweet8Share2ShareShareShare2

Related Posts

Link Between Cardiovascular Health and Carpal Tunnel Syndrome

Researchers find major link between cardiovascular health and disorders such as carpal tunnel syndrome, rotator cuff tendinitis

June 5, 2023
Dr. Alex Herrera

Phase 3 SWOG Cancer Research Network trial, led by a City of Hope researcher, demonstrates one-year progression-free survival in 94% of patients with Stage 3 or 4 classic Hodgkin lymphoma who received a checkpoint inhibitor combined with chemotherapy

June 4, 2023

The promise of novel FolRα-targeting antibody drug conjugate in recurrent epithelial ovarian cancer

June 3, 2023

Carbon-based stimuli-responsive nanomaterials: classification and application

June 3, 2023
Please login to join discussion

POPULAR NEWS

  • plants

    Plants remove cancer causing toxins from air

    41 shares
    Share 16 Tweet 10
  • Element creation in the lab deepens understanding of surface explosions on neutron stars

    36 shares
    Share 14 Tweet 9
  • Deep sea surveys detect over five thousand new species in future mining hotspot

    35 shares
    Share 14 Tweet 9
  • How life and geology worked together to forge Earth’s nutrient rich crust

    35 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Researchers find major link between cardiovascular health and disorders such as carpal tunnel syndrome, rotator cuff tendinitis

Phase 3 SWOG Cancer Research Network trial, led by a City of Hope researcher, demonstrates one-year progression-free survival in 94% of patients with Stage 3 or 4 classic Hodgkin lymphoma who received a checkpoint inhibitor combined with chemotherapy

The promise of novel FolRα-targeting antibody drug conjugate in recurrent epithelial ovarian cancer

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 50 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In