• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, July 25, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Simpler models may be better for determining some climate risk

Bioengineer by Bioengineer
September 24, 2020
in Biology
Reading Time: 3 mins read
0
ADVERTISEMENT
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: NOAA

Typically, computer models of climate become more and more complex as researchers strive to capture more details of our Earth’s system, but according to a team of Penn State researchers, to assess risks, less complex models, with their ability to better sample uncertainties, may be a better choice.

“There is a downside to the very detailed, very complex models we often strive for,” said Casey Helgeson, assistant research professor, Earth and Environmental Systems Institute. “Sometimes the complexity of scientific tools constrains what we can learn through science. The choke point isn’t necessarily at the knowledge going into a model, but at the processing.”

Climate risks are important to planners, builders, government officials and businesses. The probability of a potential event combined with the severity of the event can determine things like whether it makes sense to build in a given location.

The researchers report online in Philosophy of Science that “there is a trade-off between a model’s capacity to realistically represent the system and its capacity to tell us how confident it is in its predictions.”

Complex Earth systems models need a lot of supercomputer time to run. However, when looking at risk, uncertainty is an important element and researchers can only discover uncertainty through multiple runs of a computer model. Computer time is expensive.

“We need complex models to simulate the interactions between Earth system processes,” said Vivek Srikrishnan, assistant research professor, Earth and Environmental Systems Institute. “We need simple models to quantify risks.”

According to Klaus Keller, professor of geosciences, multiple model runs are important because many events of concern such as floods are, fortunately, the exception, not what is expected. They happen in the tails of the distribution of possible outcomes. Learning about these tails requires many model runs.

Simple models, while not returning the detailed, complex information of the latest complex model containing all the bells and whistles, can be run many times quickly, to provide a better estimate of the probability of rare events.

“One of the things we focus on are values embedded in the models and whether the knowledge being produced by those models provides decision makers with the knowledge they need to make the decisions that matter to them,” said Nancy Tuana, DuPont/Class of 1949 Professor of Philosophy and Women’s, Gender, and Sexuality Studies.

Determining an appropriate model that can address the question and is still transparent is important.

“We want to obtain fundamental and useful insights,” said Keller. “Using a simple model that allows us to better quantify risks can be more useful for decision-makers than using a complex model that makes it difficult to sample decision-relevant outcomes.”

Srikrishnan added, “We need to make sure there is an alignment between what researchers are producing and what is required for real-world decision making.”

The researchers understand that they need to make both the producers and users happy, but sometimes the questions being asked do not match the tools being used because of uncertainties and bottlenecks.

“We need to ask ‘what do we need to know and how do we go about satisfying the needs of stakeholders and decision makers?'” said Tuana.

###

The National Science Foundation through the Network for Sustainable Climate Risk Management supported this work.

Media Contact
A’ndrea Elyse Messer
[email protected]

Related Journal Article

http://dx.doi.org/10.1086/711501

Tags: Atmospheric ScienceClimate ChangePhilosophy/Religion
Share12Tweet8Share2ShareShareShare2

Related Posts

Machine Learning Uncovers Sorghum’s Complex Mold Resistance

July 20, 2025
blank

Archaeal Ribosome Shows Unique Active Site, Hibernation Factor

July 17, 2025

Mobile Gene Regulator Balances Arabidopsis Shoot-Root Growth

July 16, 2025

Mobile Transcription Factor Drives Nitrogen Deficiency Response

July 16, 2025
Please login to join discussion

POPULAR NEWS

  • Blind to the Burn

    Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    61 shares
    Share 24 Tweet 15
  • AI Achieves Breakthrough in Drug Discovery by Tackling the True Complexity of Aging

    70 shares
    Share 28 Tweet 18
  • USF Research Unveils AI Technology for Detecting Early PTSD Indicators in Youth Through Facial Analysis

    43 shares
    Share 17 Tweet 11
  • Dr. Miriam Merad Honored with French Knighthood for Groundbreaking Contributions to Science and Medicine

    46 shares
    Share 18 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Additive Manufacturing of Monolithic Gyroidal Solid Oxide Cells

Machine Learning Uncovers Sorghum’s Complex Mold Resistance

Pathology Multiplexing Revolutionizes Disease Mapping

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.