• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, August 2, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Simple method rescues stressed liver cells

Bioengineer by Bioengineer
December 21, 2018
in Health
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Isolated human hepatocytes are essential tools in preclinical and clinical liver research, but cell quality is highly variable. Now, researchers from Uppsala University have devised a simple protocol that improves hepatocyte quality and enables cells from a wider quality spectrum to be used in standard and advanced cell culture. The findings are published in Archives of Toxicology.

Hepatocytes are responsible for detoxification of the blood, and constitute around 80% of the liver volume. They are used extensively in laboratory experiments, such as studies of drug uptake, metabolism, and toxicity. Freshly isolated human hepatocytes are not regularly available, however, as they can only be prepared by highly specialized laboratories. Therefore, researchers rely on deep-frozen (cryopreserved) cells to ensure continuous access. Unfortunately, freezing and thawing mammalian cells is very stressful and frequently results in loss of function.

“The cellular stress associated with isolation and freezing takes its toll on the hepatocytes, and many cells are too damaged to recover completely after thawing. When too many cells are damaged, they become practically useless for most applications,” says Magnus Ölander, a PhD student in the Drug Delivery group headed by professor Per Artursson at Uppsala University.

The research group used state-of-the-art mass spectrometry to compare the expression of thousands of proteins in damaged and healthy hepatocytes, and found that the damage involved apoptosis, a controlled form of cell death.

“Through further analysis, we noticed that the damaged cells were mostly in the early stages of apoptosis. We reasoned that if we could figure out a way to temporarily decrease the stress, we could give the cells a chance to recover,” says Magnus Ölander.

The researchers therefore treated hepatocytes with different stress-reducing compounds, and discovered that the damage could indeed be reversed by using a specific apoptosis inhibitor. Based on these findings, they designed a simple restoration protocol that improves the quality of suboptimal human hepatocyte preparations to the point where they can be used for most applications, with restored functionality in terms of drug uptake, metabolism, and toxicity. This is the first time that human hepatocytes of suboptimal quality have been ‘rescued’ from the freeze state, which has previously been considered a futile endeavor.

“Another novel aspect is the transient nature of our approach. The inhibitor is only used for a short time after thawing, and does not need to be included in the cell culture medium. We predict that our protocol can dramatically increase the availability of human hepatocytes of high quality, as suboptimal human hepatocytes can be found in deep-freezers in laboratories all over the world. This will ultimately give the scientific community improved access to these important cells,” says Magnus Ölander.

###

Media Contact
Per Artursson
[email protected]
46-704-250-888

Related Journal Article

http://www.uu.se/en/news-media/press-releases/press-release/?id=4560&area=3,8&typ=pm&lang=en
http://dx.doi.org/10.1007/s00204-018-2375-9

Tags: Cell BiologyInternal MedicineLiverMedicine/Health
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

New Research Explores the Brain as a Potential Target for Type 1 Diabetes Treatments

August 2, 2025
Macrophage-T Cell Interaction Boosts SLAMF1 in TB Defense

Macrophage-T Cell Interaction Boosts SLAMF1 in TB Defense

August 2, 2025

Strawberry Notch 1 Protects Neurons by Regulating Yeats4

August 2, 2025

What “And” vs. “Then” Reveal About Hospital Visits: Insights from Online Reviews

August 1, 2025
Please login to join discussion

POPULAR NEWS

  • Blind to the Burn

    Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    60 shares
    Share 24 Tweet 15
  • Dr. Miriam Merad Honored with French Knighthood for Groundbreaking Contributions to Science and Medicine

    46 shares
    Share 18 Tweet 12
  • Study Reveals Beta-HPV Directly Causes Skin Cancer in Immunocompromised Individuals

    38 shares
    Share 15 Tweet 10
  • Sustainability Accelerator Chooses 41 Promising Projects Poised for Rapid Scale-Up

    35 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

New Research Explores the Brain as a Potential Target for Type 1 Diabetes Treatments

Macrophage-T Cell Interaction Boosts SLAMF1 in TB Defense

Strawberry Notch 1 Protects Neurons by Regulating Yeats4

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.