• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, October 18, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Simple method rescues stressed liver cells

Bioengineer by Bioengineer
December 21, 2018
in Health
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Isolated human hepatocytes are essential tools in preclinical and clinical liver research, but cell quality is highly variable. Now, researchers from Uppsala University have devised a simple protocol that improves hepatocyte quality and enables cells from a wider quality spectrum to be used in standard and advanced cell culture. The findings are published in Archives of Toxicology.

Hepatocytes are responsible for detoxification of the blood, and constitute around 80% of the liver volume. They are used extensively in laboratory experiments, such as studies of drug uptake, metabolism, and toxicity. Freshly isolated human hepatocytes are not regularly available, however, as they can only be prepared by highly specialized laboratories. Therefore, researchers rely on deep-frozen (cryopreserved) cells to ensure continuous access. Unfortunately, freezing and thawing mammalian cells is very stressful and frequently results in loss of function.

“The cellular stress associated with isolation and freezing takes its toll on the hepatocytes, and many cells are too damaged to recover completely after thawing. When too many cells are damaged, they become practically useless for most applications,” says Magnus Ölander, a PhD student in the Drug Delivery group headed by professor Per Artursson at Uppsala University.

The research group used state-of-the-art mass spectrometry to compare the expression of thousands of proteins in damaged and healthy hepatocytes, and found that the damage involved apoptosis, a controlled form of cell death.

“Through further analysis, we noticed that the damaged cells were mostly in the early stages of apoptosis. We reasoned that if we could figure out a way to temporarily decrease the stress, we could give the cells a chance to recover,” says Magnus Ölander.

The researchers therefore treated hepatocytes with different stress-reducing compounds, and discovered that the damage could indeed be reversed by using a specific apoptosis inhibitor. Based on these findings, they designed a simple restoration protocol that improves the quality of suboptimal human hepatocyte preparations to the point where they can be used for most applications, with restored functionality in terms of drug uptake, metabolism, and toxicity. This is the first time that human hepatocytes of suboptimal quality have been ‘rescued’ from the freeze state, which has previously been considered a futile endeavor.

“Another novel aspect is the transient nature of our approach. The inhibitor is only used for a short time after thawing, and does not need to be included in the cell culture medium. We predict that our protocol can dramatically increase the availability of human hepatocytes of high quality, as suboptimal human hepatocytes can be found in deep-freezers in laboratories all over the world. This will ultimately give the scientific community improved access to these important cells,” says Magnus Ölander.

###

Media Contact
Per Artursson
[email protected]
46-704-250-888

Related Journal Article

http://www.uu.se/en/news-media/press-releases/press-release/?id=4560&area=3,8&typ=pm&lang=en
http://dx.doi.org/10.1007/s00204-018-2375-9

Tags: Cell BiologyInternal MedicineLiverMedicine/Health
Share12Tweet8Share2ShareShareShare2

Related Posts

Navigating Young Adulthood: Autism Milestones and Supports

October 18, 2025

Empowering Female Nurses: Balancing Parenthood and Professional Growth

October 18, 2025

Fetal Heart Surgery: Insights from Comprehensive Review

October 18, 2025

Mesenchymal Stem Cell Media Aids High Glucose-Damaged HUVECs

October 18, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1260 shares
    Share 503 Tweet 315
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    282 shares
    Share 113 Tweet 71
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    118 shares
    Share 47 Tweet 30
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    102 shares
    Share 41 Tweet 26

About

BIOENGINEER.ORG

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Improving Carbon Reduction Strategies with OCO and ICOS

Placental DNA Mutations, Stress, and Infant Emotions

Navigating Young Adulthood: Autism Milestones and Supports

Subscribe to Blog via Email

Success! An email was just sent to confirm your subscription. Please find the email now and click 'Confirm' to start subscribing.

Join 65 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.