• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, August 20, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Silicon waveguides move us closer to faster, light-based logic circuits

Bioengineer by Bioengineer
February 8, 2021
in Chemistry
Reading Time: 4 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: by Urbonas, D., Mahrt, R.F. and Stöferle

For decades, the speed of our computers has been growing at a steady pace. The processor of the first IBM PC released 40 years ago, operated at a rate of roughly 5 million clock cycles per second (4.77 MHz). Today, the processors in our personal computers run around 1000 times faster.

However, with current technology, they’re not likely to get any faster than that.

For the last 15 years, the clock rate of single processor cores has stalled at a few Gigahertz (1 Gigahertz = 1 billion clock cycles per second). And the old and tested approach of cramming ever more transistors on a chip will no longer help in pushing that boundary. At least not without breaking the bank in terms of power consumption.

A way out of the stagnation could come in the form of optical circuits in which the information is encoded in light rather than electronics. In 2019, an IBM Research team together with partners from academia built the world’s first ultrafast all-optical transistor capable of operating at room temperature. The team now follows up with another piece of the puzzle, a silicon waveguide that links up such transistors, carrying light between them with minimal losses.

Wiring up the transistors of an optical circuit with silicon waveguides is an important requirement to make compact, highly integrated chips. That’s because it’s easier to place other needed components such as electrodes in its close vicinity if the waveguide is made of silicon. The techniques used for that purpose have been refined for decades in the semiconductor industry.

However, silicon being a notoriously strong absorber of visible light makes it great for capturing sunlight in a photovoltaics panels but a poor choice for a waveguide where light absorption means signal loss.

Making a fence to confine light

So, the IBM researchers thought of ways to use the mature silicon technology while circumventing the absorption issue. Their solution involves nanostructures called high contrast gratings with a striking behavior that some of the team members had already discovered over 10 years ago, albeit for another application.

A high contrast grating consists of nanometer sized “posts” lined up to form a sort of fence that prevents light from escaping. The posts are 150 nanometers in diameter and are spaced in such a way that light passing through the posts interferes destructively with light passing between posts. Destructive interference is a well-known phenomenon by which waves oscillating out of sync cancel each other out at a point in space. It affects light, which is an electromagnetic wave, just as it does sound and other types of wave. In this case, the destructive interference makes sure that no light can “leak” through the grating. Instead, most of the light gets reflected back inside the waveguide. The IBM researchers also showed that absorption of light inside the posts themselves is minimal. All this together translates in losses of only 13 percent along a light travel path of 1 millimeter inside the waveguide. For comparison: Along already only one hundredth of that distance (10 micrometers) in a pure silicon waveguide without the gratings, the losses would amount to 99.7 percent.

Simulations for precise grating design

On its face, the basic idea behind the high contrast gratings looks simple. However, it was indeed surprising when the researchers found out for the first time that they could keep light from being absorbed by a “dark” material like silicon.

Back in 2010, when they first observed the grating effect, it occurred in a laser microcavity which helped because the light amplification by the laser would compensate for the losses. Also, they had the light hitting the gratings at almost 90 degrees which is a sweet spot for the grating effect to kick in. But keeping the losses low in a waveguide without the benefit of the laser gain and at almost grazing light incidence was much more challenging.

To make sure their grating design would be up to the task, the team ran simulations showing how light propagation inside the waveguide would change with varying grating dimensions. They found out that the grating would provide efficient guiding of light over a broad band of wavelengths. All they needed to do was choose the right spacing between the grating posts and make the posts themselves to the right thickness within a precision margin of 15 nanometers. Using a standard silicon photonics fabrication process, those requirements proved manageable. In fact, the experiments confirmed what the simulations had predicted in terms of low loss for visible light in the range between 550 and 650 nanometers.

Potential benefits for optical circuits and beyond

The team found some evidence through simulations that this design can be used to make not only straight waveguides but also guide the light around corners. But they haven’t yet run the experiments to confirm this idea. Even if it proves feasible, some further optimization will be needed to keep the additional losses low in that case. Looking ahead, a next step will be to engineer the efficient coupling of the light out of the waveguides into other components. That will be a crucial step in the team’s multi-year exploratory research project with the goal of integrating the all-optical transistors they demonstrated in 2019 into integrated circuits capable of performing simple logic operations.

The team believes that their low-loss silicon waveguide could enable new photonic chip designs for use in biosensing and other applications that rely on visible light. It could also benefit the engineering of more efficient optical components such as lasers and modulators widely used in telecommunications.

###

Media Contact
Thilo Stöferle
[email protected]

Related Journal Article

http://dx.doi.org/10.1038/s41377-020-00454-w

Tags: Chemistry/Physics/Materials SciencesOptics
Share12Tweet8Share2ShareShareShare2

Related Posts

Advancing Database Technology to Enhance Detection of Designer Drugs

Advancing Database Technology to Enhance Detection of Designer Drugs

August 20, 2025
Scientists Unveil Groundbreaking Crystal That Produces Oxygen

Scientists Unveil Groundbreaking Crystal That Produces Oxygen

August 20, 2025

High-Frequency Molecular Vibrations Trigger Electron Movement

August 20, 2025

Scientists Amazed by Enormous Bubble Surrounding Supergiant Star

August 20, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    141 shares
    Share 56 Tweet 35
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    80 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    60 shares
    Share 24 Tweet 15
  • Predicting Colorectal Cancer Using Lifestyle Factors

    47 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Malignant Neoplasm Trends in Kashi Hospitals Analyzed

Chasing the Cure: Advances in the Search for an HIV Vaccine

Rethinking Diabetes and Hypertension Treatment in Frail Older Adults: Prioritizing Do No Harm

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.