• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, July 31, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Signalling protein discovery may lead to drug-based therapies to treat hyperparathyroidism

Bioengineer by Bioengineer
May 28, 2019
in Health
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Duke-NUS Medical School

SINGAPORE, 28 May 2019 – Overactive parathyroid glands,which control the body’s blood calcium levels, can lead to kidney stones, neuropsychiatric disorders and bone abnormalities, particularly among elderly women. Researchers led by Duke-NUS Medical School have discovered a signalling protein that appears to protect these glands from excessive activity, providing insights for drug development to treat hyperparathyroidism – a condition currently treatable only through surgery.

“Not many molecules are known to inhibit parathyroid growth and there are no drugs available in the market to treat the condition,” said Assistant Professor Manvendra Singh, the study’s corresponding author from the Cardiovascular and Metabolic Disorders Programme at Duke-NUS Medical School. “Surgery is the most common treatment for hyperparathyroidism. However, reoperative surgery for persistent or recurrent hyperparathyroidism remains technically challenging due to fibrotic scarring and distorted anatomy that make it more difficult to identify abnormal parathyroid glands. Patients are also at increased risk for laryngeal nerve injury, cervical bleeding and postoperative hypocalcemia.”

The parathyroid are four small glands located in the neck, behind the larger thyroid, and are responsible for maintaining healthy blood calcium levels through the secretion of parathyroid hormone (PTH). Primary hyperparathyroidism ? a condition in which these glands produce too much PTH, elevating blood calcium levels ? can lead to kidney stones, neuropsychiatric disorders and bone abnormalities.

The research team discovered that semaphorin3d (Sema3d), a signalling protein secreted by developing parathyroid glands, helps to prevent excessive growth. Sema3d was found to reduce signalling within the EGFR/ERBB signalling pathway, which is responsible for parathyroid cell growth, and is also known to mediate cancer growth and survival.

In a transgenic model lacking the gene that codes for Sema3d, EGFR signalling was activated, leading to parathyroid cell proliferation and the development of primary hyperparathyroidism. Turning off EGFR signalling with a known anti-cancer drug caused some of the parathyroid tissue to return to normal. The finding suggests Sema3d and drugs that can similarly inhibit EGFR signalling could treat hyperparathyroidism.

“This discovery is a potential game-changer in the treatment of hyperparathyroidism,” said Prof Patrick Casey, Senior Vice Dean for Research at Duke-NUS. “Considering the condition is common in the elderly, possible drug-based therapeutic options in the future would reduce the burden of surgery and associated risks in these elderly patients.”

The research team further believes Sema3d’s protective role in restricting parathyroid cell proliferation, by suppressing the EGFR/ERBB signalling pathway, could be relevant to other tumour types as well. Further investigations could lead to the development of anti-tumour treatments employing genetically engineered Sema3d or other drugs that target the protein’s downstream pathways, the researchers conclude.

###

Media Contact
Federico Graciano
[email protected]

Original Source

https://www.duke-nus.edu.sg/about/media/newsroom/detail/index/signalling-protein-discovery-to-treat-hyperparathyroidism

Related Journal Article

http://dx.doi.org/10.1074/jbc.ra118.007063

Tags: EndocrinologyMedicine/HealthMetabolism/Metabolic Diseases
Share12Tweet7Share2ShareShareShare1

Related Posts

blank

How the MISSION Act is Transforming Quality and Outcomes of Major Cardiovascular Procedures in Veterans

July 31, 2025
blank

Mouse Lemur Cell Atlas Unlocks Primate Insights

July 31, 2025

Profiling Antibodies Targeting Chemical Modifications in Antisense Oligonucleotides

July 31, 2025

Multiomics Uncovers Key Heart Failure Targets

July 31, 2025
Please login to join discussion

POPULAR NEWS

  • Blind to the Burn

    Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    60 shares
    Share 24 Tweet 15
  • Dr. Miriam Merad Honored with French Knighthood for Groundbreaking Contributions to Science and Medicine

    46 shares
    Share 18 Tweet 12
  • Study Reveals Beta-HPV Directly Causes Skin Cancer in Immunocompromised Individuals

    37 shares
    Share 15 Tweet 9
  • Engineered Cellular Communication Enhances CAR-T Therapy Effectiveness Against Glioblastoma

    35 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

How the MISSION Act is Transforming Quality and Outcomes of Major Cardiovascular Procedures in Veterans

Leopard Seals Sing: Under-Ice Sounds Flow Like Nursery Rhymes

Mouse Lemur Cell Atlas Unlocks Primate Insights

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.