• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, October 8, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Should researchers engineer a spicy tomato?

Bioengineer by Bioengineer
January 7, 2019
in Biology
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Emmanuel Rezende Naves


The chili pepper, from an evolutionary perspective, is the tomato’s long-lost spitfire cousin. They split off from a common ancestor 19 million years ago but still share some of the same DNA. While the tomato plant went on to have a fleshy, nutrient-rich fruit yielding bountiful harvests, the more agriculturally difficult chili plant went defensive, developing capsaicinoids, the molecules that give peppers their spiciness, to ward off predators.

With the latest gene-editing techniques, it could be possible, although challenging, to make a tomato produce capsaicinoids as well, researchers argue in an opinion article publishing January 7 in the journal Trends in Plant Science. Their objective isn’t to start a hot, new culinary fad–although that’s not completely off the table–but to have an easier means of mass producing large quantities of capsaicinoids for commercial purposes. The molecules have nutritional and antibiotic properties and are used in painkillers and pepper spray.

“Engineering the capsaicinoid genetic pathway to the tomato would make it easier and cheaper to produce this compound, which has very interesting applications,” says senior author Agustin Zsögön (@shogur), a plant biologist at the Federal University of Viçosa in Brazil whose group is working toward this goal. “We have the tools powerful enough to engineer the genome of any species; the challenge is to know which gene to engineer and where.”

The spicy taste that capsaicinoids add isn’t a taste, but a reaction to pain. They activate nerve cells in the tongue that deal with heat-induced pain, which the brain interprets as a burning sensation. Evidence suggests that the evolution of capsaicinoids helped chili peppers deter small mammals from eating their fruit. Birds, which are much better seed dispersers, show no pain response to the molecules.

There are at least 23 different types of capsaicinoids, which originate from the pith of the chili pepper. The spiciness of a pepper is determined by the genes that regulate capsaicinoid production, and less pungent peppers have mutations affecting this process. Previous gene sequencing work has shown that tomatoes have the genes necessary for capsaicinoids but don’t have the machinery to turn them on.

“In theory you could use these genes to produce capsaicinoids in the tomato,” says Zsögön. “Since we don’t have solid data about the expression patterns of the capsaicinoid pathway in the tomato fruit, we have to try alternative approaches. One is to activate candidate genes one at a time and see what happens, which compounds are produced. We are trying this and a few other things.”

The sequencing of the chili pepper genome and the discovery that the tomato has the genes necessary for pungency paves the way for engineering a spicy tomato. The researchers write that not only will this endeavour help better understand the evolution of this unique botanical trait and allow for the development of tomato capsaicinoid biofactories, but perhaps allow for the development of some new varieties of produce in the grocery aisle.

###

The authors are supported by the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), the Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG, and the Max Planck Society Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES).

Trends in Plant Science, Rezende-Naves et al.: “Capsaicinoids: pungency beyond Capsicum” https://www.cell.com/trends/plant-science/fulltext/S1360-1385(18)30261-9

Trends in Plant Science (@TrendsPlantSci), published by Cell Press, is a monthly review journal that features broad coverage of basic plant science, from molecular biology through to ecology. Aimed at researchers, students, and teachers, its articles are authoritative and written by both leaders in the field and rising stars. Visit: http://www.cell.com/trends/plant-science. To receive media alerts for Cell Press journals, please contact [email protected].

Media Contact
Carly Britton
[email protected]
617-417-7053

Related Journal Article

http://dx.doi.org/10.1016/j.tplants.2018.11.001

Tags: Agricultural Production/EconomicsAgricultureBiologyFood/Food ScienceGeneticsMolecular BiologyPlant Sciences
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Linkage: Connect DNA Regulatory Peaks to Genes

October 7, 2025
Edo Cattle Market Study: High Tick Diversity Observed

Edo Cattle Market Study: High Tick Diversity Observed

October 7, 2025

Brain-on-a-Chip Technology Uncovers Mechanisms of Brain Damage in Sepsis and Neurodegenerative Diseases

October 7, 2025

How Sleep Patterns Influence Health, Cognition, Lifestyle, and Brain Structure

October 7, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    988 shares
    Share 395 Tweet 247
  • New Study Reveals the Science Behind Exercise and Weight Loss

    99 shares
    Share 40 Tweet 25
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    95 shares
    Share 38 Tweet 24
  • Ohio State Study Reveals Protein Quality Control Breakdown as Key Factor in Cancer Immunotherapy Failure

    77 shares
    Share 31 Tweet 19

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Breakthrough Blood Test for ME/Chronic Fatigue Syndrome Unveiled

Cube-Shaped CoSe2/Fe7Se8 Composites Boost Supercapacitor Performance

Calorie Labeling Associated with 2% Average Decrease in Menu Item Energy Content

Subscribe to Blog via Email

Success! An email was just sent to confirm your subscription. Please find the email now and click 'Confirm' to start subscribing.

Join 63 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.