• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Short regulatory gene spotted

Bioengineer by Bioengineer
June 11, 2017
in Biology
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

An epigenetic mechanism regulating gene activity has been revealed by a KAUST-led international team of researchers investigating interactions between the human genome and its environment in adult tissues1.

Valerio Orlando's lab at KAUST looks at the role of Ezh1, a gene whose function in mature tissues has remained unclear for 25 years. Like its twin Ezh2, Ezh1, along with a partner protein, encodes a protein involved in tagging genes to repress their activity. However, while Ezh2 mutations have been linked to cancer and developmental defects, mice lacking Ezh1 seem to develop normally.

Several years ago, Professor Orlando's group observed Ezh1 attached to the promoter of many genes that are normally switched on. "We saw this prototypical epigenetic repressor sitting on active genes, and our interpretation was that it's there to provide the ability to repress them," said Orlando. Hypothesizing that repression might be useful under stress, the team chemically stressed muscle cells and observed repression only in cells expressing Ezh1. Stress spurred Ezh1 into action, tagging genes with a repressive marker that could later be removed, a reversible response that Orlando calls "cell plasticity": the ability to adapt to a dynamic environment.

A turning point in the conception of Ezh1 came when the team discovered a truncated version of the protein. Many human genes encode several slightly different versions of a protein, known as isoforms, and the researchers realized that an additional band lurking in some images was in fact a shorter isoform of Ezh1.

"Once our eyes were redirected to the short version, we immediately understood a number of things," recalled Orlando. The truncated isoform was in the cytoplasm rather than the nucleus, and the team demonstrated that it acts as an environmental sensor regulating the activity of the full-length protein. Ezh1 needs a partner protein in order to tag genes, but the short isoform binds to the partner, trapping it in the cytoplasm, "like keeping that protein on a leash." In stressed cells, the short isoform is degraded, releasing the partner to join full-length Ezh1 in the nucleus. Once the stress stops, short-Ezh1 once again traps the partner, stopping long-Ezh1 from acting, and the repressive tags are removed.

These findings reveal a new landscape of genetic regulation for researchers to explore, where interactions occur between isoforms of a single gene rather than products of different genes. "This offers a new paradigm for gene regulation, linking the genome with the environment," said Orlando. "It's a very exciting perspective."

###

Media Contact

Michelle D'Antoni
[email protected]

http://kaust.edu.sa/

https://discovery.kaust.edu.sa/en/article/352/short%250aregulatory-gene-spotted

Related Journal Article

http://dx.doi.org/10.1038/nsmb.3392

############

Story Source: Materials provided by Scienmag

Share12Tweet8Share2ShareShareShare2

Related Posts

New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

February 6, 2026

DeepBlastoid: Advancing Automated and Efficient Evaluation of Human Blastoids with Deep Learning

February 6, 2026

Navigating the Gut: The Role of Formic Acid in the Microbiome

February 6, 2026

AI-Enhanced Optical Coherence Photoacoustic Microscopy Revolutionizes 3D Cancer Model Imaging

February 6, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Scientists Identify SARS-CoV-2 PLpro and RIPK1 Inhibitors Showing Potent Synergistic Antiviral Effects in Mouse COVID-19 Model

Neg-Entropy: The Key Therapeutic Target for Chronic Diseases

Multidisciplinary Evidence-Based Guidelines for Therapeutic Drug Monitoring of Biologics in Inflammatory Bowel Disease

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.