• HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Friday, July 1, 2022
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Shaping the future of purification

Bioengineer by Bioengineer
June 22, 2022
in Science News
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Impure chemical mixtures can now be separated based on differences in molecular silhouette. Membranes have been developed with nanoscale pores that match the shape of impurities in the mix so that only the impurity can pass through. KAUST researchers have suggested that the first application of these metal-organic framework (MOF) based shape-selective membranes could be energy-efficient, low-cost purification of natural gas. 

Shaping the future of purification

Credit: © 2022 KAUST.

Impure chemical mixtures can now be separated based on differences in molecular silhouette. Membranes have been developed with nanoscale pores that match the shape of impurities in the mix so that only the impurity can pass through. KAUST researchers have suggested that the first application of these metal-organic framework (MOF) based shape-selective membranes could be energy-efficient, low-cost purification of natural gas. 

 

MOFs are organic-inorganic hybrid crystalline porous materials that can feature different types of pores through their structure. By constructing MOFs from different organic and inorganic building blocks, researchers can finely tune the pore structure and aperture. MOF membranes have previously shown great potential for separating mixtures of molecules based on differences in their size or polarizability.

 

Natural gas, also known as methane, is predicted to play an increasingly important role in the global energy supply during the transition to renewables. Almost all natural gas reservoirs are contaminated with nitrogen. “The nitrogen dilutes the heating value of natural gas, so it has to be removed,” says Sheng Zhou, a Ph.D. student in Mohamed Eddaoudi’s lab, who led the research.

 

Nitrogen is chemically inert and similar in both kinetic shape and polarizability to methane, so cannot be removed by existing membranes. “For industrial natural gas purification, there needs to be nitrogen rejection units based on cryogenic distillation,” Zhou says. This ultra-low temperature separation technique is expensive and energy intensive.

 

Eddauodi, Zhou and their colleagues have developed a highly efficient MOF-based method to purify methane. “We designed a porous membrane that separates nitrogen from methane by exploiting one significant difference between the molecules: their shape,” Zhou says.

 

While nitrogen has a rod-like linear structure, methane has a triangular trefoil-type profile. The team created a new membrane material, named Zr-fum67-mes33–fcu-MOF, with asymmetric pores precisely shaped to block methane but allow nitrogen to pass through.

 

The team has now shown that, compared to cryogenic separation, the shape-selective MOF reduced purification costs by 66 percent for a methane stream containing 15 percent nitrogen.

Other potential impurities could also be removed. For methane contaminated with 35 percent carbon dioxide and 15 percent nitrogen, the purification cost was reduced by approximately 73 percent. “We saw a massive reduction in total purification cost when the membrane was used,” says Osama Shekhah, a senior research scientist in Eddaoudi’s lab.

 

Until now, shape difference in molecular mixtures has been largely ignored, Eddaoudi says. “Shape-mismatch induced separation is a totally new separation mechanism,” he says. “Once people focus on shape-mismatch separation, they may find many chemical mixtures, such as linear and branched hydrocarbons or aromatic chemicals, that could be efficiently separated using this concept.”



Journal

Nature

DOI

10.1038/s41586-022-04763-5

Article Title

Asymmetric pore windows in MOF membranes for natural gas valorization

Article Publication Date

22-Jun-2022

Share12Tweet7Share2ShareShareShare1

Related Posts

Jacob Scott, MD, DPhil, Cleveland Clinic

Cleveland Clinic researchers shed new light on importance of ecological cellular interactions in targeted therapy resistance in lung cancer

July 1, 2022
Evolutionary tree

Hidden in genetics: The evolutionary relationships of two groups of ancient invertebrates revealed

July 1, 2022

“Soft” CRISPR may offer a new fix for genetic defects

July 1, 2022

Emerging Omicron subvariants BA.2.12.1, BA.4 and BA.5 are inhibited less efficiently by antibodies

July 1, 2022

POPULAR NEWS

  • Pacific whiting

    Oregon State University research finds evidence to suggest Pacific whiting skin has anti-aging properties that prevent wrinkles

    37 shares
    Share 15 Tweet 9
  • The pair of Orcas deterring Great White Sharks – by ripping open their torsos for livers

    35 shares
    Share 14 Tweet 9
  • University of Miami Rosenstiel School selected for National ‘Reefense’ Initiative focusing on Florida and the Caribbean

    35 shares
    Share 14 Tweet 9
  • Mapping the ‘energy fingerprints’ of lung cancer leads to fundamental treatment rethink

    34 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Tags

VaccinesZoology/Veterinary ScienceVirologyViolence/CriminalsUrbanizationWeather/StormsUrogenital SystemVehiclesVaccineWeaponryUniversity of WashingtonVirus

Recent Posts

  • Cleveland Clinic researchers shed new light on importance of ecological cellular interactions in targeted therapy resistance in lung cancer
  • Hidden in genetics: The evolutionary relationships of two groups of ancient invertebrates revealed
  • “Soft” CRISPR may offer a new fix for genetic defects
  • Emerging Omicron subvariants BA.2.12.1, BA.4 and BA.5 are inhibited less efficiently by antibodies
  • Contact Us

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
Posting....